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Tracking Code Bug Fix Ripple Effects Based on
Change Patterns Using Markov Chain Models
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Abstract—Change impact analysis evaluates the changes that are
made in the software and finds the ripple effects, in other words,
finds the affected software components. Code changes and bug
fixes can have a high impact on code quality by introducing new
vulnerabilities or increasing their severity. A recent high-visibility
example of this is the code changes in the logdj web software
CVE-2021-45105 to fix known vulnerabilities by removing and
adding method called change types. This bug fix process exposed
further code security concerns. In this article, we analyze the most
common set of bug fix change patterns to have a better understand-
ing of the distribution of software changes and their impact on
code quality. To achieve this, we implemented a tool that compares
two versions of the code and extracts the changes that have been
made. Then, we investigated how these changes are related to
change impact analysis. In our case study, we identified the change
types for bug-inducing and bug fix changes using the Quixbugs
dataset. Furthermore, we used 13 of the projects and 621 bugs
from Defects4] to identify the common change types in bug fixes.
Then, to find the change types that cause an impact on the software,
we performed an impact analysis on a subset of projects and bugs
of Defects4]. The results have shown that, on average, 90% of the
bug fix change types are adding a new method declaration and
changing the method body. Then, we investigated if these changes
cause an impact or a ripple effect in the software by performing a
Markov chain-based change impact analysis. The results show that
the bug fix changes had only impact rates within a range of 0.4-5%.
Furthermore, we performed a statistical correlation analysis to
find if any of the bug fixes have a significant correlation with the
impact of change. The results have shown that there is a negative
correlation between caused impact with the change types adding
new method declaration and changing method body. On the other
hand, we found that there is a positive correlation between caused
impact and changing the field type.

Index Terms—Bug fix, change detection, change impact analysis.

1. INTRODUCTION

HANGE is a continual and integral part of the software
C evolution process. A source code change can be performed
for enhancing software or fixing a bug. However, source code
changes can also introduce bugs into the system. These bugs
originate due to the ripple effects caused by small changes. In
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other words, the bugs introduced by a change can be related due
to a dependency within the source code. When a bug (issue) is
reported in a repository, it is not easy to localize the commit
where the bug is introduced. However, bug fixes are relatively
easier to localize if the version control system is used effectively.
For instance, Just et al. [1] prepared a collection of real bugs for
researchers, which contains the commit hash values when the
bug report was entered and the commit hash value when the bug
was fixed.

The type of changes made in the software has an important
role in the likelihood to introduce an error [2]. For instance,
changes that are made in the software, which are mostly related
to dependency-based changes, are more likely to cause a ripple
effect. These types of changes could be changes that are made
in superclasses, methods that rely on call relationships, and
deletion/addition of classes and methods. These types of changes
were classified as changes that cause a ripple effect in the
software [3]. Therefore, knowing the types of changes in the
software can have a critical part in detecting changes that might
cause an impact on other software components. Furthermore,
popular software version control systems, such as Github, can
provide the changes that are made in the software; however, they
do not give any information on what type of changes are made
in the software, which could reduce the time for code reviews.

In addition, the ideal way of using version control systems is
to push small commits, rather than pushing large commits. Since
large commits contain too much information about changes,
this could be a very long task for the code reviewer to analyze
the changes that are made, and find possible impacts or ripple
effects that might cause in the software. Sometimes, commits
contain only code relocations. An example we found at' is
partially given in Fig. 1. This example shows that some commits
in repositories present code changes; however, when code is
carefully reviewed there are actually no changes made in the
software. In this example, there are 67 additions and 67 deletions
in one class however, only some of the methods in the class are
just repositioned (method moved on top of the class or moved to
the bottom of the class). Even though there is actually no actual
code change in the software, when the code is being reviewed
on Github it could easily mislead code reviewers to make wrong
conclusions, such as methods have been added and removed.

Nevertheless, detecting change patterns plays an important
role in many other fields of software engineering. For instance,
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if (left.equals(right) || right.equals(left)) {
fail("Objects must not compare equal for "

}

if (left.hashCode() == right.hashCode()) {

+ name + "(" + type + ")");

fail("Hash code should not be equal for "
}
}

+ name + "(" + type + ")");

o
©
L

Fig. 1.

private void assertNotEquals(String name, String type, Object left, Object right) {1114 -
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private void assertNotEquals(String name, String type, Object left, Object right) {
1115 - if (left.equals(right) || right.equals(left)) {

1116 - fail("Objects must not compare equal for " + name + "(" + type + ")");
1111177 (88 }
1118 -

1119 -

if (left.hashCode() == right.hashCode()) {
fail("Hash code should not be equal for " + name + "(" + type + ")");
1120 - }

e - }

Example commit from Apache commons-csv, in which the diff shows that a new method is implemented (left-hand side) and an existing method is deleted

(right-hand side). However, the added and the deleted methods are exactly the same. The only change is that a method is repositioned, but there is no change that

would cause a side effect or an impact on the software.

Fig. 2. Experimental design for RQ2. Commit A is the bug fix commit, where
Commit B is the parent commit of Commit A.

Bug Fix Commit
(Commit A)

change pattern information has been used in training neural
networks [4], [5] for automatic bug fixing, understanding bug
fixes and for automatic program repair [6], detecting readability
improvements [7], and in fault localization [8], [9].

In this article, we first share our novel approach and archi-
tecture for detecting change types of a given commit that cause
an impact on the software. Then, we detect change types for
the commits with bug fixes from Defects4] and investigate the
relation between change types, which are likely to cause an
impact on other software components. Moreover, we utilized the
QuixBugs2 [10] benchmark and dataset. The dataset includes 40
Java programs. For each program, there is a defective version
and a corrected version. This gives us the flexibility to analyze
change types bidirectionally as follows:

1) First, analyzing the change types based on the fixed defects

(defect version changed to corrected version).

2) Second, analyzing the change types based on bug-
inducing changes (corrected version changed to defect
version).

We develop the following research questions and answer them

in the discussion section.

1) RQI: What are the Most Common Bug Fix Change Pat-
terns?: To answer this question, we analyze all the bug
fixes from 13 projects in Defects4J, and also all the bug
fixes from 40 Java programs in the Quixbugs dataset, for a
total of 661 bug fixes. We identify the change types that are
performed in the bug fix commits and find the commonly
performed change actions in these bug fix commits.

2) RQ2:Is There a Relationship Between the Bug Fix Change
Patterns and the Impact Caused by Change?: To investi-
gate if there is a relation between bug fix changes and
impact causing changes, we perform a change impact
analysis using a Markov chain and program slicing-based
approach. We perform a change impact analysis between
two commits: a) the bug fix commit; and b) the parent
commits of a bug, which is demonstrated in Fig. 2. Once
we obtained the change impact analysis results, we divide

2[Online]. Available: https://github.com/jkoppel/QuixBugs

the impacted methods by the total methods (impact rate).
Then, we analyze the overall impact for each project from
our case study, and we perform a statistical analysis to find
a correlation between the caused impact and the change
type.
This article makes the following main contributions.
1) Method: We present an empirical study that analyzes the
relation between the bug fix change patterns and changes
that cause an impact on other software components. We
aim to provide a better understanding of bug fix preference,
due to its low impact. To evaluate the impact of the bug
fixes, we use a Markov chain and program slicing-based
impact analysis tool called Code Change Sniffer [11].?
Furthermore, we have extended our previous work [12],
and provided a novel approach to detect change types
between two commits that cause an impact on soft-
ware components, while other studies [13]-[15] focus
on statement-level (fine-grained) changes. Our novel ap-
proach is based on the ANTLR parser, which generates
a parse tree and compares two trees for detecting the
changes. Using parse trees can be more effective than ab-
stract syntax trees (ASTs), due to its capability of contain-
ing keywords, which makes it easy to detect changes, such
as type changes, modifier changes, etc. Our change-type
detection works on the following four different levels.
1) Class-level changes.
2) Field-level changes.
3) Method-level changes.
4) Statement-level (method body) changes.
We have also investigated change types for the bug fixes
that are made for the Log4j CVE-2021-45105 vulnerabil-
1ty.
Tool: We developed and extended our tool called change
inspector Java (CIJ )* [12] and made it publicly available
for detecting code changes. The tool uses PyDriller [16]
for mining Github repositories. CIJ detects the changes
that are made and implements the end-to-end pipeline for
predicting future code changes with the Markov chain.
3) Dataset: We supply our detected change-type dataset to
other researchers and practitioners to provide a better
reproducibility of our study. Our dataset contains the

2)

following.
3[Online].  Available:  https://github.com/ekincanufuktepe/code-change-
sniffer
4[Online]. Available: https://github.com/ekincanufuktepe/change-

instepector-java

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on May 11,2022 at 17:56:11 UTC from IEEE Xplore. Restrictions apply.


https://github.com/jkoppel/QuixBugs
https://github.com/ekincanufuktepe/code-change-sniffer
https://github.com/ekincanufuktepe/code-change-sniffer
https://github.com/ekincanufuktepe/change-instepector-java
https://github.com/ekincanufuktepe/change-instepector-java

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

UFUKTEPE et al.: TRACKING CODE BUG FIX RIPPLE EFFECTS BASED ON CHANGE PATTERNS USING MARKOV CHAIN MODELS 3

1) The change types detected by CIJ for the correspond-
ing bug fix commits from Defects4].

2) The change types detected by CIJ for the correspond-
ing bug-inducing and bug fix changes from Quixbugs.

3) The probabilities of methods being impacted by the
bug fixes.

The rest of this article is organized as follows. Section II
provides the background on the change impact analysis. In
Section III, the change detection architecture is presented with
the change types that are used. Section IV explains the case study
and gives its evaluation. Section V outlines threats to validity
in our study, and answers the research questions introduced in
Section I. In Section VI, related work on change-type prediction
is presented. Finally, Section VII concludes this article.

II. BACKGROUND

In this section, we provide the essential background to provide
a better understanding of our study. In the following section,
we provide a running example of the change impact analysis
technique and tool called Code Change Sniffer [11], which we
used in our study.

A. Change Impact Analysis

In the 1980s, Lehman [17] and Schneidewind [ 18] mentioned
the difficulties that software evolution has brought to software
maintenance. One of these difficulties is the ripple effects, which
are caused by changes in the source code. On the other hand,
evolution in software development had been considered to be
inevitable, and change should be accepted as an intrinsic part of
the software development life cycle [17]. Nowadays, this is still
true. However, changes are more rapid due to advancements in
the technology and user expectations. Lehman and Belady [19]
supported this fact in their five laws on software evolution, where
they stated the first law as “change is continual”. In such arapidly
evolving software environment, developers need mechanisms
and tools to keep up the pace with better resource utilization.

Previous studies have mentioned [20]-[22] that software
maintenance consumes the majority of resources in many soft-
ware organizations. Nevertheless, a rapidly evolving software,
due to the changes that are made in the software, is more
likely to introduce faults and errors [23]. An example of fast-
evolving software was introduced by Kumar [24], which stated
that Google was committing 20 code changes per minute, and
approximately 50% of their code was changing monthly. In a
rapidly evolving software development environment, predicting
future code changes related to the current changes could reduce
the effort spent on software maintenance. For instance, predict-
ing code changes can reduce the time of finding the code sections
that need to be changed, or highlight codes that require a change
to fix the possible errors, which are introduced by modifications.

B. Running Example of Code Change Sniffer

Code Change Sniffer [11] is a change impact analysis tool
that uses the Markov chain to calculate the probabilities of
impacted methods in the software. The probabilistic information

is computed by analyzing the software with static analysis. The
diff information between two commits (or versions) is used
as an initial vector, while the transition matrix is filled with
probabilistic information acquired from forward slicing. In the
following paragraphs of this section, we provide a small running
example of how Code Change Sniffer works. The example code,
which we will be running, is a small program that finds the prime
numbers, which is shown in Fig. 3(a) and will be referred to as
program SIEVE.

Code Change Sniffer first extracts the static call graph (CG)
of the program, which represents the call relationships between
methods. For program SIEVE from Fig. 3(a), we extract the static
CG, which is shown in Fig. 4. Then, we perform the forward
slicing on each method in the program based on its parameters.
The program slicing example and results for the program SIEVE
are shown in Fig. 3(b), together with the original code in Fig. 3.

Based on the results of program slicing, we calculate the
probability of how much the method will be affected by changed
arguments/parameters. To calculate the probability of how much
the program will be affected, we divide the remaining lines after
slicing by the total lines before slicing. In the following, we show
probabilities for each method, which will be used as a part of
the transition matrix.

1) main: 0/1 = 0.

2) sieve: 4/5 = 0.8.

3) all: 2/3 = 0.67.

4) list_comp: 3/4 = 0.75.

After the probabilistic information is obtained from forward
slicing, we encode them into the Markov chain’s edges along
with the change information based on the type of the model,
namely CG and the effect graph. However, it is important to
mention that we used CGs in this study to analyze the impacts.
On the other hand, the initial vector is encoded with change in-
formation, which applies to both models. Starting with encoding
the edges, we construct a transition matrix 7', such as given in the
following, for example Fig 5, which is similar to an adjacency
matrix:

1) mgq: main,
2) maq: sieve;
3) ma: all;
4) mg: list_comp;
mo Mmip M2 ms3
mo 0 0.8 0 0
p_ 0 0 0.67 0.75

Mo 0 0 0 0
ms 0 0 0 0

Another property of the Markov chain is that summation of
the outgoing edge probabilities of a node should be equal to
1. Therefore, the probability summation of each row in the
transition matrix should be equal to 1. However, a row sum-
mation could be less than or greater than 1, depending on the
probabilities obtained from forward slicing. For instance, on the
left-hand side of Fig. 5, let us assume that we encode the Markov
chain model with probabilistic information with forward slicing
and change information. We can see that some of the nodes’
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public class SIEVE {

public static void main(String args[]) {
sieve(100);
}

public static boolean all(ArraylList<Boolean> arr) {
for (boolean value : arr) {
if (!value) { return false; }
}
return true;

}

public static ArraylList<Boolean> list_comp(int n, ArraylList<Integer> primes) {
ArraylList<Boolean> built_comprehension = new ArrayList<Boolean>();
for (Integer p : primes) {
built_comprehension.add(n % p > 0);

return built_comprehension;

}

public static ArraylList<Integer> sieve(Integer max) {
ArraylList<Integer> primes = new ArraylList<Integer>();
for (int n=2; n<max+1l; n++) {
if (all(list_comp(n, primes))) {
primes.add(n);
}
}

return primes;

(a)

Fig. 3.
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public class SIEVE {

public static void main(String args[]) {

}

public static boolean all(ArraylList<Boolean> arr) {
for (boolean value : arr) {
if (!value) { return false; }
}
}

public static ArraylList<Boolean> list_comp(int n, ArraylList<Integer> primes) {
for (Integer p : primes) {
built_comprehension.add(n % p > 0);

return built_comprehension;

¥

public static ArraylList<Integer> sieve(Integer max) {
for (int n=2; n<max+1l; n++) {
if (all(list_comp(n, primes))) {
primes.add(n);
}
}
return primes;

}

(b)

(a) Original code is given. (b) Sliced code is given, which is a subset of the original code, where the unaffected lines of codes are removed. The remaining

code represents the affected lines after a change are made in the parameters for every method in the code.

Fig. 4. Static CG of the program SIEVE.

Markov Chain Model
(Before Weighting)

0.67
0.7

Markov Chain Model
(After Weighting)

—>
=

Markov chain model construction with weighted edges.

Fig. 5.

summation of outgoing edges is less than 1 or greater than 1.
To satisfy the properties of the Markov chain, we weight each
node’s outgoing edges, by dividing the summation of outgoing
edges by each outgoing edge of that node. On the right-hand side
of Fig. 5, we obtain the updated Markov chain after weighting
the edges.

After the weighting process is completed, we construct the
transition weighted matrix T, of the Markov chain model as
follows. According to the graph model in Fig. 5, there is no out-
going edge from methods m (all) and ms (list_com). Therefore,
in the transition matrix, we would expect to have the entire row
filled with zeroes. However, we have a single 1, which is placed
to itself, such as my — my and mgz — ms. According to the
Markov chain’s properties, the summation of the columns for

each row should be equal to 1. Thereby, for a row where the
sum of column values is equal to 0, we set the m; — m,; edge
probability to 1. If the method m; is not changed, setting the
probability will not affect the overall impact calculation, since
it will be multiplied by O.

mo M1 M2 ms

mo 0 1 0 0
L 0 0 0472 0.528

Y my 0 0 1 0

ms 0 0 0 1

To calculate the impact vector, in other words, the vector
that contains the probabilities of predicted methods that will
change an initial vector should be multiplied by the transition
matrix. We encode the initial vector with change information we
have collected from diff calculations. The change information
represents the likelihood of a method that could affect itself by
the changes, which are made to the current method. Therefore, as
the amount of change increases the probability of being affected
by changes will be higher.

Fig. 6 shows the original code and the changed code example
for SIEVE. In Fig. 6(b), we see that only the sieve (m1) method is
changed, where only the FOR-statement is modified. To measure
the number of changes made can be quantified differently. For
example, the change can be calculated based on the lines of
source codes, or for Java it could be the number of statements in
bytecode. Even though the tool [11] we used is for quantifying
the percentage of change is based on bytecode; to simplify the
example, we will use lines of Java source code. In the running
example given in Fig. 6(b), the percentage of change made
in sieve method is 1/5 = 0.2. Thereby, in the Markov chain,
the changed methods with given probabilities are mg = 0.0,
m1 = 0.2, mo = 0.0, and m3 = 0.0. The four given change-
probabilities are encoded into the initial vector as follows.
Previously, to satisfy the properties of the Markov chain in the
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public class SIEVE {
public static void main(String args[]) {
sieve(100);
}
public static boolean all(ArraylList<Boolean> arr) {
for (boolean value : arr) {

if (!value) { return false; }

}
return true;
¥
public static ArraylList<Boolean> list_comp(int n, ArraylList<Integer> primes) {
ArraylList<Boolean> built_comprehension = new ArraylList<Boolean>();
for (Integer p : primes) {
built_comprehension.add(n % p > 0);

return built_comprehension;
¥
public static ArraylList<Integer> sieve(Integer max) {
ArraylList<Integer> primes = new ArraylList<Integer>();
for (int n=2; n<max+l; n++) {
if (all(list_comp(n, primes))) {
primes.add(n);

}
return primes;
¥
}

(a)

Fig. 6.

transition matrix, we weight the edges of each node’s outgoing
edges. Similarly, we also need to weight the initial vector values
as well. According to the Markov chain’s properties, the sum-
mation of the probabilities in the initial vector should be equal to
1, where the sum of the probabilities in our initial vector is less
than 1.

I=100020000].

We weight the initial vector by dividing each value in the
vector by the summation of the probabilities in the vector.
Thereby, we have updated our initial vector I to I,,, which is
given as follows:

L,=[0100].

Finally, we obtain the final forms of our initial vector and
transition matrix, and by using the final forms of the initial
vector and transition matrix, we calculate the impact vector in
(1), which is predicted to be changed methods. Since our initial
vector and transition matrix are weighted, we expect to calculate
the impact vector, where the summation of its probabilities is
equal to 1.

ToaTy =1 000.472 0.528 ]. )

Based on the Markov chain model in Fig. 5 and calculation
in (1), the probabilities of the methods being affected by the
changes are calculated as mg = 0, m; = 0.0, my = 0.472, and
mg = 0.528. With respect to the change made in method sieve
(mq), two methods are affected: 1) mso; and 2) m3. However,
the results indicate that method /list_comp (m3) has the highest
likelihood of being affected by the changes.

In Fig. 7, we show the CG of one of the small-scale projects
from our case study. The CG is used for constructing the transi-
tion matrix, where the edge weights are calculated with program
slicing.

public class SIEVE {

public static void main(String args[]) {
sieve(100);
}

public static boolean all(ArraylList<Boolean> arr) {
for (boolean value : arr) {
if (!value) { return false; }
}
return true;

}

public static ArraylList<Boolean> list_comp(int n, ArrayList<Integer> primes) {
ArraylList<Boolean> built_comprehension = new ArraylList<Boolean>();
for (Integer p : primes) {
built_comprehension.add(n % p > 0);

return built_comprehension;

}

public static ArraylList<Integer> sieve(Integer max) {
ArrayList<Integer> primes = new ArraylList<Integer>();
[for (int n=1; n<=max; n++) {] change in for loop
1t (all(list_comp(n, primes))) {
primes.add(n);

}

return primes;

(b)

(a) Original code is given. (b) Changed code is given, which is in the method sieve, where the FOR loop is modified.

III. CHANGE DETECTION ARCHITECTURE

In this section, we introduce the details of our change detec-
tion tool and architecture C1J, as shown in Fig. 8.

A. Change Types

In the context of change impact analysis, the changes
in the source for Java programming language can occur
in four categories: 1) class-type changes; 2) method-type
changes; 3) method body (statement)-type changes; and 4)
field-type changes. These types of changes were introduced by
Ren et al. [2], Sun et al. [3], Duraes and Madeira [25], and
Martinez et al. [26]. In this article, we adopted these change
types for our automatic change-type detection tool with slight
modifications.

While we classify the change types on source codes, we
focused on the type of changes that occur at a programming
language level rather than the developer behavior level changes.
For instance, a developer may just change the name of the class,
without modifying the class body. On the developer side, this
change will be interpreted as changing the class name type of
change. However, in programming language level change this
will be interpreted as delete class and add new class, because
changing the name of the class affects the signature of the class.
This similarly applies to methods as well, when a method name
is changed, the change reflects as a method delete, and a new
method added.

The change types for classes, methods, fields, and statements
are given in Tables -1V, respectively.

B. Automatic Change-Type Detection Architecture

In this section, we present our automatic change-type detec-
tion architecture. Our change-type detection process follows
the order of preprocessing, parse tree generation, extracting
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Fig. 7. CG example from Apache commons-csv project, which is used for constructing the transition matrix for the Markov chain model.
1) Preprocessing 2) Parse Tree 3) Extracting key 4) Change Type Detection
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Fig. 8.

CIJ architecture with multithreaded change-type detection. The change detection starts with preprocessing by only extracting changed files, then follows

a parse tree generation for each changed file. From parse trees, key change features are extracted to be used in change-type detection. For each change type and its
detection, a thread is generated and reported.
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TABLE I
TYPES OF CLASS CHANGES

Type Description
AC Add a new class (new class declaration)
DC Delete a class with all its members
IAC Increase “accessibility” of the class
(“private” modifier changed to “public”)
DAC Decrease “accessibility” of the class
(“public” modifier changed to “private”)
AFC Add a “final” modifier to the class
DFC Delete the “final” modifier from the class
ASC Add a “static” modifier to the class
DSC Delete the “static” modifier from the class
AAbC Add a “abstract” modifier to the class
DADBC | Delete the “abstract” modifier from the class
APC Add parent class
DPC Delete parent class

key change features, and detecting change type, which is also
provided in Fig. 8.

1) Preprocessing: The preprocessing phase is where we first
retrieve the changed source codes. Retrieving the changed source
codes is achieved by PyDriller [16]. We simply provide the bug
fix commit hash to PyDriller and extract the changes with the
diff tool. Using the diff tool also provides which source files
are changed and allows us to download the source files as well.
The preprocessing phase allows us to eliminate any redundant
process of parse tree generation or computation, and only focus
on the changed source codes.

2) Parse Tree Generation: For parse tree generation, we used
ANTLRvV4® [27], and we have used the grammar designed for
Java 1.8. In a previous work [15], ASTs were used for change-
type detection, due to their compactness and ease of the process.
We acknowledge and justify that parse trees are complex trees
compared to AST, however, they contain details that an AST
does not contain. For instance, AST is also known as a logical
description of parse trees. Therefore, it does not contain any
syntactical constructs, such as braces, parenthesis, white spaces,
and keywords. However, based on the change types, we have
defined and used in the context of change impact analysis, we
need changes that are made to the keyword information, such as
modifiers, data types, etc.

3) Extracting Key Change Features: Once we have obtained
the parse tree, we extract the information in four categories: a)
class; b) method; c) field; and d) method body (statements). For
each category, we have separate abstract data types defined, and
since we are interested in particular data in each category, we
have different information extracted. For a class, we extract the
class name, parent classes, and modifiers. For a field, we extract
field names, modifiers, and types. For a method, we extract
method name, modifiers, return type, parameter names, param-
eter modifiers, parameter types, and method body. For method
body information (statements), we extract method call informa-
tion, IF-statements, WHILE-statements, and FOR-statements.

4) Change-Type Detection: The change-type detection is
performed based on comparing two abstract data types. Each
change rule is defined as a subclass of ChangeRule, where

5[Online]. Available: https://github.com/antlr/grammars-v4

every change rule overrides two methods: a) getCategory; and
b) isChangeCategory. This design allows developers to easily
define new change rules. During the change-type detection
phase, if the related change is found, the gerCategory method
returns the change type, which is triggered and determined by the
method isChangeCategory. Each change type has its own unique
implementation and definition of the change rule. This type of
design allows us to implement our architecture in multithreaded
to achieve better performance.

Each change rule class receives two parse trees as inputs: 1)
one derived from bug fix changes; and 2) the other derived from
the parent commit of the bug fix changes. For each change type,
the parse trees are parsed separately and only target the key
features that we are interested in. For instance, as demonstrated
in Fig. 9, to check if a method’s accessibility is increased (IAM),
we first search for the method. We search for the method based on
its signature, which consists of the method name, return type, and
parameter types (order sensitive). Thereby, we are not interested
in the method body or the name of the parameters, thus, this
information is not extracted from the parse tree. Once the method
is found, we check if the method had a private access modifier
before the bug fix, and if the modifier has been changed to a
public access modifier in the bug fix, then we label the change
as an JAM change.

Currently, CIJ contains 43 change rules in total. New rules
can be implemented or existing rules can be extended. We have
also built and designed CIJ, which allows users to select that
which change types they are interested in finding. Even though
by default, all the change rules are set active, some can be
deactivated, which could increase the speed.

IV. CASE STUDY

Our case study is composed of the following two phases.

1) The first phase is identifying the common change types
among 13 Java projects from Defects4] and 40 Java pro-
grams from Quixbugs.

2) The second phase is performing a change impact analysis
on a subset of projects and bug fixes from Defects4].

Some of the commits had missing source files, which pre-

vented us to compile and perform change impact analysis on
them. These projects and commits were discarded from our
change impact analysis. Therefore, we performed change impact
analysis only on eight Java projects and 232 bug fixes from
Defects4], which is a subset of our phase 1 analysis.

A. Change-Type Analysis Results

In our case study of the change-type analysis, we used 13 Java
projects and 621 bug fixes from Defects4J [1], as well as 40 bug
fixes from 40 Java programs in Quixbugs [10]. The selected
projects and bugs are given in Table V. The bugs are collected
from the active bugs, which contain the following two commit
hash information.

1) The first commit hash value corresponds to the commit

when the bug was first reported.

2) The second commit hash value corresponds to the commit

when the bug fix was made.
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Fig. 9.

matched, modifiers are compared for change-type detection (red).

TABLE II
TYPES OF METHOD CHANGES

Type Description
AM Add a new method (new method declaration)
DM Delete a method
CM Change method body
IAM Increase “accessibility” of the method
(“private” modifier changed to “public”)
DAM Decrease “acc_essibility” of the method
(“public” modifier changed to “private”)
AFM Add a “final” modifier to the method
DFM Delete the “final” modifier from the method
ASM Add a “static” modifier to the method
DSM Delete the “static” modifier from the method
AAbBM Add a “abstract” modifier to the class
DAbM | Delete the “abstract” modifier from the method
CRM Change return type of the method
CNPM Change name of parameters of the method
CPM Change parameters of the method except for
the change of the names of the parameters

In this study, we only focused on the bug fix commits, since
we cannot locate when the bug was first introduced among the
past commits.

Our change-type analysis results for 13 projects and 40
Java programs are shown in Fig. 10. Except for QuixBugs in
Fig. 10(h), the results in Fig. 10 indicate the type of changes
involved per commit. They do not represent the number of
changes made per change type in a commit. However, these
results can also be obtained in our repository. For instance, in
Fig. 10(e) and (1), both have a value of 1 for change-type CM,
which indicates that in every bug fix commit, there was at least
one CM-type of change. The change types defined in Tables I
—IV, which are missing in Fig. 10, indicate that those change
types did not exist in any bug fix commits for the corresponding
project. According to the results, there are four types of changes
that are commonly and consistently made while fixing bugs:
1) changes made in the method body (CM); 2) adding a new
method declaration (AM); 3) adding a method invocation (M CA);

IEEE TRANSACTIONS ON RELIABILITY

After Change

. pub11c double sum(double a, double b) {
] return a + b;

Method #1

Increase Accessibility of Method Detected (IAM)

Example of increase accessibility of method (IAM) change detection. The first method signatures (green sections) are matched. Once signatures are

TABLE III
TYPES OF FIELD CHANGES

Type Description
AF Add a new field (new field declaration)
DF Delete a field
IAF Increase “accessibility” of the field
(“private” modifier changed to “public”)
DAF Decrease “accessibility” of the field
(“public” modifier changed to “private”)
AFF Add a “final” modifier to the field
DFF Delete the “final” modifier from the field
ASF Add a “static” modifier to the field
DSF | Delete the “static” modifier from the field
CTF Change type of field
TABLE IV
TYPES OF STATEMENT CHANGES
Type Description
MCA Method call added (adding a method invocation)
MCD | Method call deleted (deleting a method invocation)
AIS Adding if-statement
DIS Deleting if-statement
AWS Adding while-statement
DWS Deleting while-statement
AFS Adding for-statement
DES Deleting for-statement

and 4) deleting a method invocation (MCD). We also would
like to highlight that although there are change types defined
at class-level and field-level, four common change types, which
were found in bug fixes, are at method-level and statement-level
(in method body) changes.

Ren et al. [2] reported that, in Java programs, CM and AM
change types are found failure-inducing changes. By checking
the bug fix changes, we found that the types of changes for
failure-inducing and bug fixing are exactly the same. Therefore,
there might be a strong and positive correlation between bug
fixes and failure-inducing changes.
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(a)

jackson-core

commons-jxpath

Fig. 10.

commons-codec

(m)

joda-time

closure-compiler

mockito

AWS

(€] (h)

(k)

commons-compress

(n)

Change types per commit for each project [except for QuixBugs 10(h)]. The change types are ordered alphabetically in a clockwise direction. For

each project, change types CM, AM, MCA, and MCD are found common change types in bug fixes. The labels of changes type are given in Tables I-IV. (a)
Jsoup. (b) Gson. (c) Joda-time. (d) Closure-compiler. (e) Jackson-core. (f) Jackson-databind. (g) Mockito. (h) QuixBugs. (i) Commons-cli. (j) Commons-codec.
(k) Commons-collections. (I) Commons-jxpath. (m) Commons-csv. (n) Commons-compress.

We have also evaluated the run-time performance of our
automatic change-type analysis, as given in Table VI and
Fig. 11. For the Defects4] projects, our run-time is evaluated
based on the average time spent on the change-type analysis per
commit, while for QuixBugs programs the time represents the
change-type analysis spent per file. With all the change rules
activated, the results have shown that per each commits/file

our change-type analysis ranges between ~1-7 s, which is a
reasonable time for aiding code reviewers.

B. Change Impact Analysis Results

For the change impact analysis, we utilized a recently pro-
posed Markov chain-based tool to perform a change impact
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Fig. 11. Timing in seconds for the change-type analysis, using box plots per commit for each project [except for (h)]. The change-type analysis time execution
for [11(h)] QuixBugs, which is calculated for each class. The “x” in each plot is the mean value. (a) Jsoup. (b) Gson. (c) Joda-time. (d) Closure-compiler.
(e) Jackson-core. (f) Jackson-databind. (g) Mockito. (h) QuixBugs. (i) Commons-cli. (j) Commons-codec. (k) Commons-collections. (1) Commons-jxpath. (m)
Commons-csv. (n) Commons-compress.

TABLE V TABLE VI
SELECTED PROJECT AND BUG FIX INFORMATION RUN-TIME EVALUATION OF THE CHANGE-TYPE ANALYSIS
Project Number of bugs fixed Project Number Average run-time
Change Type | Change Impact of commits | per commit/file (sec)
Analysis Analysis closure-compiler 174 6.931
closure-compiler 174 - commons-cli 39 1.632
commons-cli 39 31 commons-codec 18 4.944
commons-codec 18 18 commons-collections 4 6.250
commons-collections 4 - €OMmMONS-compress 47 2.426
commons-compress 47 8 €cOommons-csv 16 2.875
COMMOnNS-csv 16 16 commons-jxpath 22 2.455
commons-jxpath 22 - gson 18 4.778
gson 18 18 Jjackson-core 26 3.600
jackson-core 26 23 jackson-databind 108 3.843
jackson-databind 108 - joda-time 26 6.000
joda-time 26 25 jsoup 93 4.301
jsoup 93 93 mockito 30 1.133
mockito 30 - quixbugs 30 0.350
quixbugs 40 -
TABLE VII
CHANGE IMPACT ANALYSIS RESULTS
analysis [11]. The change impact analysis approach uses forward Project Name Avg. Impacted | Avg. Total Avg.
L. Methods Methods Impact Rate
slicing for data dependency to find affected statements after commons-chi 235 37839 7%
a change and uses CG information to find the dependency commons-codec 372 374.83 1.2%
relationship between methods. However, as mentioned in Sec- commons-compress 2.75 277.38 1%
tion I'V and given in Table V, we were only able to perform the COMUMONS-CSV 1.6 373.06 0.5%
‘ ; ’ ! gson 63.94 1230.61 5%
change impact analysis on a subset of the change-type analysis Jackson-core 739 30174 03%
due to incomplete commits. Some of the analyzed projects joda-time 7.84 2210.28 0.4%
were not compilable due to missing source files. Therefore, Jsoup 3.82 596.65 0.7%

we have performed our change impact analysis on 232 of the

621 bug fix commits from Defects4]. We have not performed

a change impact analysis on the QuixBugs dataset, due to the very few methods, which is insignificant to perform a change
Java programs only consisting of a single Java class file with  impact analysis on.
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Fig. 12. Box plots of change impact analysis results are represented in the number of impacted methods and the total existing methods in the analyzed project.
(a) Jsoup. (b) Gson. (c¢) Joda-time. (d) Jackson-core. (e) Commons-csv. (f) Commons-cli. (g) Commons-codec. (h) Commons-compress.

Our change impact results are given in Table VII and Fig. 12.
We measure the impact based on the impacted methods, where
their probability is over 0.1. We have selected the 0.1 threshold
due to the change impact analysis tool we used, and its related
study [11], [28] has shown that using the threshold 0.1 provides
higher f-measure and recall results. To calculate the impact rate,
we divide the impacted methods by the total methods. According
to our change impact analysis results, the project gson has the
maximum impact rate with 5%, and the project joda-time has
the lowest impact rate with 0.4%. The results show that the bug
fix changes do not seem to have a high impact on other software
components. However, to have a better understanding of the
relationship between change types and impact, in Section IV-C,
we performed a statistical correlation analysis.

TABLE VIII
RUN-TIME ANALYSIS FOR THE CHANGE IMPACT ANALYSIS PER EACH BUG FIx

. Average run-time

Project Name per b%lg fix (sec)
commons-cli 32.983
commons-codec 25.746
commons-compress 24.758
€cOMMONS-csv 15.440
gson 30.812
jackson-core 28.675
joda-time 185.320
jsoup 35.145

In Table VIII, we present the run-time evaluation for the
change impact analysis. The change impact analysis run-time
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TABLE IX
CORRELATION RESULTS BETWEEN CAUSED IMPACT AND CHANGE TYPES
Imp. CM AM AF AC DM APC CPM DPC | CNPM | CRM CTF DC DF TAM AIS AFS | AWS | MCA | MCD | DIS DFS | DWS
Imp. 1
CM -0.449 1
AM -0.304 | 0.258 1
AF 0.017 | 0.154 | 0.141 1
AC 0.021 | 0.086 | 0.156 | 0.413 1
DM 0.066 | 0.126 | 0.153 | 0.146 | 0.110 1
APC -0.027 | 0.024 | 0.030 | 0.131 | 0.189 | -0.022 1
CPM [ 0.018 | 0.074 | 0.031 | 0.065 | 0.002 | 0.078 | -0.013 1
DPC -0.027 | 0.024 | 0.030 | 0.131 0.189 | -0.022 1 -0.013 1
CNPM | -0.033 | 0.035 | 0.042 | 0.069 | 0.118 | -0.032 | -0.006 | -0.019 | -0.006 1
CRM | 0.033 [ 0.068 | 0.075 [ 0.023 [ -0.136 | 0.075 [ -0.026 [ 0.184 [ -0.026 | -0.037 1
CTF 0.236 | 0.042 | 0.051 | -0.058 | -0.040 | 0.086 | -0.008 | 0.175 | -0.008 | -0.011 | 0.067 1
DC 0.096 | 0.024 | 0.030 | 0.131 | 0.189 | 0.194 | -0.004 | -0.013 | -0.004 | -0.006 | -0.026 | -0.008 1
DF 0.023 [ 0.079 [ -0.018 [ 0.157 [ -0.005 | 0.137 [ -0.014 [ -0.043 | -0.014 | -0.020 | 0.166 | -0.024 | 0.310 1
1AM -0.021 | 0.035 | -0.083 | -0.047 | -0.032 | 0.121 | -0.006 | -0.019 | -0.006 | -0.009 | 0.100 | -0.011 | -0.006 | 0.210 1
AIS -0.035 | 0.266 | 0.080 | 0.172 | 0.132 | 0.204 | -0.047 | 0.138 | -0.047 | -1.130 | 0.039 | 0.079 | 0.092 | 0.132 | -0.067 1
AFS | 0.050 [ 0.074 | 0.090 | 0.369 [ -0.070 | 0.152 [ -0.013 [ 0.191 [ -0.013 | -0.019 | 0.118 | 0.175 | -0.013 | 0.442 | -0.019 | 0.185 1
AWS | -0.035 | 0.065 | 0.079 | 0.264 | 0.182 | 0.023 | -0.012 | 0.226 | -0.012 | 0.256 | 0.079 | -0.020 | -0.012 | 0.137 | -0.016 | 0.139 | 0.226 1
MCA | -0.704 | 0.602 | 0.496 | 0.121 | 0.078 | 0.076 | 0.015 | 0.045 | 0.015 0.021 0.088 | 0.026 | 0.015 | 0.065 | 0.021 | 0.160 | 0.045 | 0.039 1
MCD | -0.704 [ 0.602 | 0.496 | 0.121 [ 0.078 | 0.076 | 0.015 [ 0.045 [ 0.015 | 0.021 | 0.088 | 0.026 | 0.015 | 0.065 [ 0.021 | 0.160 | 0.045 [ 0.039 1 1
DIS 0.012 | 0.172 | -0.003 | 0.098 | -0.052 | 0.177 | -0.030 | 0.024 | -0.030 | 0.079 | -0.016 | 0.147 | -0.030 | 0.119 | 0.079 | 0.526 | 0.082 | -0.016 | 0.103 | 0.103 1
DFS 0.061 | 0.070 | 0.085 | 0.347 | -0.066 | 0.091 | -0.012 | 0.207 | -0.012 | -0.018 | 0.134 | 0.187 | -0.012 | 0.652 | -0.018 | 0.113 | 0.696 | 0.243 | 0.042 | 0.042 | 0.036 1
DWS | -0.013 | 0.070 | 0.085 | 0.291 | 0.011 | -0.064 | -0.012 | 0.084 | -0.012 | 0.238 [ 0.065 [ -0.022 | -0.012 | 0.033 | -0.018 [ -0.036 [ 0.084 | 0.519 [ 0.042 | 0.042 | 0.098 | 0.094 1

represents the average run-time per bug fix in seconds. The
average run-times in our case study ranged between ~16-186 s.
However, we remark that this study does not propose a change
impact analysis approach, and uses change the impact analysis
to find any correlation between bug fix changes and the impact
that it causes. Therefore, the run-time in Table VIII does not
reflect any performance related to the change-type analysis.

C. Correlation Between Bug Fix Changes and Change Impact
Analysis

To investigate if there is a correlation between any of the bug
fix change types causing an impact on the software, we perform a
statistical correlation analysis. For statistical correlation, we use
the Pearson correlation coefficient, which is a widely used mea-
sure for linear relationships between two normally distributed
variables. In (2), cov( X, Y') is the covariance of random variable
pairs (X,Y"), while o, and o, are the standard deviation for X
and Y, respectively. Based on the value obtained from (2), the
value of 1 represents a perfect positive relationship, —1 is a
perfect negative relationship, and O indicates the absence of a
linear relationship between variables.

~ cov(X,Y)

040y

. 2)

We calculate the sample Pearson correlation coefficient (),
using (3), which uses the estimates of the covariances and
variances based on a sample size of n in (2). It is important
to mention that the Pearson correlation coefficient works on
numerical samples, and since we only had information on the
presence of change types (categorical data) corresponding to
the caused impact rate (numerical data), we represent our change
types in numerical format (present-1 and absent-0). Finally, the
calculated correlation coefficients are given in Table IX, and in
this table, we only included the change types that were only
detected in bug fixes.

Foy = Y@ —T)(yi — 7) .
N \/211:1 (z; —T)? \/ZZ':1 (yi —7)?

3

To distinguish if there is a significant correlation between two
variables (impact and change type), we use (4) to calculate the
minimum threshold. This threshold is used to decide whether
a significant relationship exists between the change type and
the caused impact. The variable |r| is the absolute value of the
variable 7 (correlation coefficient) from (3), and the variable n
is the size of the sample. Since our sample size is n = 232, our
minimum threshold is calculated as 0.1313.

“

if || > %, then relationship exists.

According to the results in Table IX, we only see that there
are two change types that have a significant relationship with
the caused impact on the software. We observe that there is a
negative correlation between the change types CM and AM with
the caused impact in the software, which indicates that whenever
a new method is added or whenever a change in the method
body occurs, the impact decrease. On the other hand, there is a
positive correlation between change-type CTF with the caused
impact on the software. This indicates that whenever a type of
field is changed, it is likely to cause and increase the impact on
the software.

In Table IX, it is also possible to extract information on
co-changes in bug fixes. For instance, we observe that there
are strong positive correlations between DC and DF and AC
and AF, which are meaningful. These changes indicate that
whenever a new class is declared, a change of adding a new
field follows. Similarly, whenever a class declaration is deleted,
a change of field deletion follows. We also see that there is
an exceptionally high correlation between APC and DPC. This
correlation is a strong indicator that during bug fixes, there have
been changes in parent classes, by replacing a parent class with
another class. Our correlation analysis has also shown that in the
change types, there is a significant positive correlation between
CM and the change types MCA and MCD. This correlation
confirms that adding and deleting method calls occur with the
changes made in the method body (CM). We can also mention
that the method invocations mostly occur within the method
body. On the other hand, we can see that there is no significant
correlation between CM and the change types AWS, DWS, AF'S,
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Fig. 13. Comparison of bug fixes and bug-inducing changes.

DFS, and DIS, which are expected to occur within the method
body. However, it is important to recall that our case study has
emphasized change types related to bug fixes, which is a special
case of changes. For instance, we do see a significant correlation
between CM and adding an TF-statement (AIS), which is not
surprising. Defects generally occur when there is an unhandled
exception, or caused by an unexpected event. Once these defects
are identified, the codes are modified to handle the unexpected
exception with an IF-statement that covers the condition for
handling the unexpected event.

D. Analyzing Bug Fix and Bug-Inducing Changes Using the
QuixBugs Dataset

Our change-type analysis was based on bug fix changes, due
to the difficulty of finding the bug-inducing change source and
commits. Therefore, we used the QuixBugs [10] benchmark
and dataset, which are commonly used for automatic program
repair [29]-[32]. The dataset includes 40 Java programs and 40
Python programs. For each program, there are a defective version
and a corrected version. This gives us the flexibility to analyze
change types bidirectionally, i.e., analyzing the change types
based on the fixed defects (defect version changed to corrected
version), and analyzing the change types based on bug-inducing
changes (corrected version changed to defect version).

In Fig. 13, we show the change types for bug fix changes
(left-hand side columns) and bug-inducing changes (right-hand
side columns) that we found. Our results show that the change
types that exist for both are almost the same. However, we also
observed opposite types of change actions between the bug-
fixing and bug-inducing changes. For instance, we see two add
static modifier (ASM to a method) change types while fixing
bugs, and we also see two delete static modifier (DSM from
a method) change types while inducing bugs. Similarly, other
opposite changes coexist as well, such as DM and AM, AFS and
DES, AIS and DIS, and AWS and DWS. On the other hand, we
see three change types that are dominant in both bug fixing and
bug inducing: 1) CM; 2) MCA; and 3) MCD. The change-type
CM existed in every change, while MCA and MCD occurred in

Fig. 14. Change types per file for the Log4J2 project CVE-2021-45105
vulnerability fix.

38 out of 40 programs. However, this gives us the motivation to
focus on the details of CM types of changes.

Even though we are aware that the defects and fixes are
synthetic in QuixBugs, it still is a good indicator in which
granularity-level defects could be introduced and the bugs could
be fixed. Furthermore, it still supports previous studies [2] that
defects are introduced in the method body, which was found in
all 40 Java programs in every file.

E. Change-Type Analysis of Log4J2 Vulnerability Fixes

In December 2021, the vulnerabilities (CVE-2021-44228.°
CVE-2021-45046," and CVE-2021-45105%) that were found
in Log4J2 have affected a lot of software, and the severity
of these vulnerabilities were classified between medium and
critical. Therefore, we wanted to investigate that what types
of changes are made to fix these vulnerabilities. We were
able to find the commit [33] where the CVE-2021-45105
vulnerability was fixed and analyzed the changes that were
made.

According to the common vulnerabilities and exposures
(CVEs) [34], the CVE-2021-45105 is a vulnerability that
did not protect from uncontrolled recursion from self-
referential look-ups, which allowed the attackers to con-
trol the thread context map data to perform a denial-of-
service attack when the forged string input is interpreted. This
vulnerability was enumerated as an improper input valida-
tion (CWE-20") and an uncontrolled recursion (CWE-67410)
weakness.

The fix for the CVE-2021-45105 vulnerability included 35
file changes, of which 25 of them were Java source files. Among
our defined change rules, we only found eight distinct types of
changes, which are shown in Fig. 14. Our findings show that
the most common changes are MCA (adding a method invoca-
tion), MCD (deleting a method invocation), and CM (changing
method body). The changes MCD and MCA are actions of
replacing a vulnerable method with a secure method. We also

[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2021-44228
7[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2021-45046
8[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2021-45105
[Online]. Available: https://cwe.mitre.org/data/definitions/20.html
10[Online]. Available: https:/cwe.mitre.org/data/definitions/674.html
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see a significant number of AM (adding a method declaration)
changes, which are newly implemented unit tests. In addition,
against input validation vulnerabilities (CWE-20), it is very
common to see change actions, such as AIS, to mitigate input
vulnerabilities [35], which we have also found in fixing the
CVE-2021-45105 vulnerability for Log4]J2.

V. DISCUSSION

A. Answering Research Questions

1) RQI: What are the Most Common Bug Fix Change Pat-
terns?: To answer RQ1, we performed a change-type analysis
on 40 Java programs with versions of defects and bug fixes, 13
Java projects, and 621 bug fix commits. We have observed that
there are four commonly performed changes: a) MCA - adding
a method invocation; b) MCD - deleting a method invocation;
¢) CM - change in the method body; and d) AM - adding a
new method declaration. Our observations indicated that the
change-type MCA was present in every bug fix commit. For
the change-type MCD, the maximum change-type presence per
commit was found 1 and the minimum was found 0.99. For
change-type CM, the maximum change-type per commit is I,
while the minimum is 0.5. On the other hand, the maximum
change-type per commit for AM is also 1, while its minimum is
0.73.

We have also observed that among our 43 defined change
types, only 22 of them were found in the case study. The changes
that were not found were mostly related to class- and field-based
changes. Most of the changes are mostly made in the method-
level and statement-level granularities. It is important to mention
that the results represented in this article only refer to the bug fix
patterns we have defined. Therefore, there could be other change
patterns that are not addressed in this article.

Nevertheless, while answering research question RQI, it is
critical to highlight that we are able to label change types, and
our tool can be extended with new or additional change types.
Labeling changes can be used for training deep neural networks
for detecting code updates, bug fixes, and malicious codes.

2) RQ?2:Is There a Relationship Between the Bug Fix Change
Fatterns and the Impact Caused by Change?: To answer RQ?2,
we have followed the following two steps.

a) The first step was to find the impacted software compo-

nents and calculate the impact rate.

b) Then, in the second step, we perform a statistical analysis,
where we find the correlation between change types and
the caused impact.

During our change impact analysis, we have not found high
impact rates, in which our impact rates ranged between 0.4%—
5%. However, we did realize that there was a significant gap
between our lowest and highest impact rates. Therefore, we
used the Pearson correlation coefficient to find the correlations
between change types and impact results. The correlation results
have shown that there was a significant correlation between
the change types AM, CM, MCA, MCD, and CTF with the
caused impact. However, we found that the correlation between
change-type CTF and caused impact was positive, while it was
found negative for change types MCA, MCD, AM, and CM.

IEEE TRANSACTIONS ON RELIABILITY

B. Threats to Validity

Even though we have performed our case study on 13 open
source projects by using a well-known bug dataset, it is important
to mention that our case study is only limited to Java projects.
Therefore, the bug fix change-type characteristics may vary on
different programming languages.

We included the QuixBugs dataset to detect the types of
changes introduced while inducing a bug, or fixing a bug.
The QuixBugs dataset does not contain large scale programs;
therefore, they may not be realistic bug fix changes. However,
QuixBugs has been used extensively in automatic program re-
pair [10], [29], [30], [36] to learn the characteristics of bug fix
changes. With the QuixBugs dataset and benchmark, these pre-
vious studies were able to achieve successful automatic repairing
results. This indicates that, even though the bug fix changes are
synthetic, they still do represent actual bug fix changes.

For the change impact analysis, we have used one of the most
recent techniques for finding impacted methods in the software.
However, just as in every proposed change impact analysis tech-
nique, the impact analysis results might contain false positives
and false negatives. During our impact analysis evaluations, we
assumed that all the impacted methods are correct. Therefore,
our impact analysis results might be higher or lower than it is
supposed to be. However, the change impact analysis we have
used [11] has very few false negatives. In other words, the change
impact analysis technique we use has shown high recall results
and slightly low precision results, which indicates that the impact
analysis results we presented in this article are slightly high. We
can conclude that the impact caused by bug fixes is actually very
low.

For generating a parse tree, we have used ANTLR, and the
grammar that we used for the change-type analysis is designed
for the Java 1.8 syntax. Therefore, our change-type analysis
might have compatibility issues with older versions or newer
versions of Java. However, it is important to remark that the
projects we used in our case study, which are from Defects4J, are
based on Java version 1.8. Furthermore, Java 1.8 is still actively
used in the industry.

The statement-level change rules are currently limited.
We have statement-level change rules for adding/deleting IF-
statements, FOR-statements, and WHILE-statements. However,
we do not have change rules for try-catch blocks or switch cases,
which are not included in our analysis and might miss some
valuable information.

VI. RELATED WORK

There are successful studies on detecting change types. These
studies started by focusing on adding structural change infor-
mation to existing release history data for CVS [37]. Later,
a taxonomy of source code changes was built, which defined
source code changes related to tree edit operations in AST
and classified each change type [13]. Then, Fluri ef al. [14]
proposed an Eclipse plug-in called CHANGEDISTILLER, where
they also proposed a tree differencing algorithm to find the
changes. Thereby, they were able to extract fine-grained source
code changes, which can get fine-grained change information.
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Lin et al. [38] implemented an automatic tool called PYCT,
which is based on CHANGEDISTILLER to reduce the effort for
change extraction and classification. They have also introduced
taxonomy of Python source code changes.

Studies have also focused on investigating the change types
from different perspectives. For instance, Vansics et al. [9]
investigated the bug fix types at a method-level on JavaScript
programs, by using the change types definitions from [39]. They
investigated the relationship between the effectiveness of pop-
ular spectrum-based fault localization techniques and the bug
fix changes. They found that some bug fix types were difficult
and some were trivial to localize by an algorithm. For instance,
changes in operation sequence tended to be difficult, while it
was easier in IF condition-related bugs. Roy et al. [7] proposed
a model for detecting readability improvements and used static
analysis and change-type analysis tools (e.g., COMING [15] and
CHANGEDISTILLER [14]) for extracting change features.

There are also studies that exploited change patterns in train-
ing neural networks to automatically reproduce code changes
implemented by the developers in pull requests of open source
projects [5]. Furthermore, change pattern information has also
been used to train neural networks to learn how to automatically
fix bugs [4].

VII. CONCLUSION AND FUTURE WORK

In this article, we investigated the relationship between bug
fix changes and the impacts of these changes caused in the
software. To investigate this relationship, we have proposed
and publicly shared an automatic change detection tool called
CIJ. We analyzed the bug fix change types from Defects4J with
CIJ. We found that there are four common changes that are
made in bug fixes: 1) changing the method body; 2) adding a
new method declaration; 3) deleting; and 4) adding a method
call. Then, we performed a change impact analysis on the bug
fix changes to analyze their impact on the software. Among
the projects we analyzed, the caused impact in the software
ranged between 0.4%—-5%, which indicated a very low impact.
However, we wanted to investigate deeper to find if any of the
changes have a higher or lower impact. Therefore, we performed
a statistical analysis using the Pearson correlation coefficient
to find any correlation between change types and the caused
impact. We have found that among 22 change types, there were
only five change types that had a significant correlation between
the caused impacts. The change types, adding a new method
declaration, changing the method body, adding a method call,
and deleting a method call have shown a negative correlation
with the caused impact, while the change-type changing field
type has shown a positive correlation.

Our study was not only limited to finding change types and
finding any correlation between bug fix changes and impact anal-
ysis. During our research, we have found that in commits, such
as given in https://github.com/apache/commons-csv/commit/
c203896177b295¢2£5319e8c34b9d8bb9f58564e, our change
detection tool was able to distinguish that there was no change
performed, which could reduce the code reviewing process when
insufficient commit messages are provided.

Furthermore, based on our case study results and observa-
tions, the project commits we analyzed did not include any
changes that would affect the design, but progressed and evolved
with local changes. Therefore, we have not found high im-
pacts in the software. Most of the changes we found were at
the method level and statement level, which are less likely to
cause an impact. Accordingly, we may categorize commits into
three types: 1) bug-fix; 2) change request; and 3) refactoring. If
the changes in a commit are made with refactoring intentions, the
change types are also expected to be small structural and local
changes, which are again less likely to cause an impact. However,
to distinguish the difference between refactoring and a bug fix
commit, we require information on change intentions and code
quality measurements. Overall, to facilitate the practical usage
of our work and results, further analysis is required, which is
caused by inadequately and insufficiently written unit tests, and
nonexplanatory commit messages.

In future work, we plan to extend our change detection
tool by including more comprehensive statement-level change
types, such as assignments, arithmetic operations, etc. So far,
we only detect adding/deleting IF-statements, WHILE-statements,
FOR-statements, and method calls. Since our results found that
changing the method body is common in bug fixes, we found
that the adding/deleting method calls are very common. How-
ever, the presence of change types, such as assignments and
arithmetic operations, is still unknown to us. Therefore, we
want to investigate the characteristics of statement-level changes
and their impact caused in the software. Finally, we plan to
combine and support our change types with commit messages
and code quality metrics for extracting the intentions of the
changes.
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