
MuKEA-TCP: A Mutant Kill-based Local Search
Augmented Evolutionary Algorithm Approach for

Test Case Prioritization
Ekincan Ufuktepe

University of Missouri - Columbia
Columbia, MO, USA
euh46@missouri.edu

Deniz Kavzak Ufuktepe
University of Missouri - Columbia

Columbia, MO, USA
deniz.kavzakufuktepe@mail.missouri.edu

Korhan Karabulut
Yasar University
Izmir, Turkey

korhan.karabulut@yasar.edu.tr

Abstract—The test case prioritization (TCP) problem is defined
as determining an execution order of test cases so that important
tests are executed early. Different metrics have been proposed
to measure importance of test cases. While coverage and fault-
detection based measures have benefits and have been used in
a lot of studies, mutation kill-based measures have emerged in
TCP recently, since they have benefits addressing issues with
other approaches. Moreover, in the TCP problem, finding the
optimal solution has a complexity of the factorial of the number
of test cases, making meta-heuristic algorithms a highly suitable
approach. In this study, we propose an end-to-end pipeline for
TCP, Mutation Kill-based Evolutionary Algorithm (MuKEA-
TCP), which allows users to have fast and efficient TCP results
from existing source code, or directly from the mutant kill report
of a system, without the need for any coverage information or real
faults. An evolutionary algorithm utilizing Average Percentage
Mutant Killed (APMK) as the objective function augmented with
a local search procedure enhancing is used in MuKEA-TCP. We
performed our case study on five open-source Java projects, in
which we compared the APMK values of the final TCP results
of some well-known greedy algorithms, and MuKEA-TCP using
different initialization methods. Our results have shown that
providing additional method as an initial input to the proposed
augmented evolutionary algorithm has improved the results and
outperformed other methods for our case study. Findings of
this study have shown that using an evolutionary algorithm
augmented with local search with mutation kill-based APMK
as the objective function enhances the commonly used greedy
prioritization methods, with a minor execution time trade-off.

Index Terms—test case prioritization, software testing, search-
based software engineering, evolutionary algorithms

I. INTRODUCTION

Software evolution is an inevitable process of the software
development life-cycle, in which it is quite common that a
part of it breaks down. To overcome this, regression testing
is performed, which generally requires running all test cases.
Running the complete test suite may take longer than the
available time and budget. For instance, in an industrial project
[1], [2], running the entire test suite has taken seven weeks.
On the other hand, when all the tests are executed, we want to
reveal the faults sooner. Therefore, we want to prioritize the
test cases in a test suite. The test cases can be prioritized based
on their coverage information, history of revealing previous
faults, or mutation kill success.

Test case prioritization (TCP) problem aims to find an
execution order of available test cases in a test suite T to
maximize a selected objective function. The formal definition
of TCP problem [1] is given below:

Given: T, a test suite; PT, the set of permutations of T;
g, a function from PT to the real numbers.
Problem: Find T ′ ∈ PT such that:

∀T ′′ ∈ PT, g(T ′) ≥ g(T ′′).

To solve the TCP problem with an exact solution, all the
possible permutations need to be checked, which is infeasible
in real projects with a huge number of test cases. Even with
smaller number of test cases, the effort is not meaningful,
since a sub-optimal solution is sufficient in the TCP problem,
which is mostly used for efficiency in running a test suite
in a common software project. Therefore, defining the TCP
problem as an optimization problem maximizing a metric that
measures the quality of the TCP order is appropriate. The
objective function for TCP may vary for different purposes
and with respect to the usable information at hand about
the project and test suite. The objective of the TCP can be
detecting the faults sooner, by maximizing the widely used
Average Percentage Faults Detected (APFD) [1], measuring
the weighted average of the percentage of faults detected.
However, in real life it is impossible to know the faults that
are exposed by a test before running all tests [3].

On the other hand, coverage-based objective functions such
as Average Percentage Branch Coverage (APBC), Average
Percentage Decision Coverage (APDC) and Average Percent-
age Statement Coverage (APSC) can be calculated. The issue
in using coverage information is that it is not an effective mea-
sure and the effectiveness might vary based on the software
system [4]. Another objective function that is used in TCP is
Average Percentage Mutant Kill (APMK) [5], [6], which uses
mutant kill information and gives a higher priority to high
quality tests. Furthermore, studies show that using mutants in
TCP is an effective measure [7], [8] and are valid substitutes
for real faults [9]–[11], which has motivated our study to use
APMK as an objective function to prioritize test cases.



Since the TCP problem is an optimization problem of the
chosen objective function, different deterministic, heuristic and
meta-heuristic optimization algorithms can be used instead of
heuristic approaches. Greedy algorithms can be very effective
in TCP, however, they are prone to converge to a local opti-
mum. The evolutionary algorithm (EA) is easy to implement,
fast and can be run in parallel. We provided different greedy
algorithm test case orderings as an initial input to the EA.
We used the cross-over and mutation operators in the EA, and
supported it with a local search (LS) method to find a better
local optimum or even a global optimum.

The overall diagram of the proposed TCP pipeline MuKEA-
TCP is given in Fig. 1. MuKEA-TCP takes a project with
its test suite as inputs. The rest of the pipeline can also be
used when there is a provided mutant kill report, meaning
the project and the original test suite is not a requirement for
the method, when a mutant kill report is provided. Mutants
are injected and mutation analysis is conducted, producing a
mutant kill report, which will be used for mapping between
individual test cases and individual mutants for each test case
mutant map (TCMM). This map provides detailed information
on the test cases regarding their mutant kill successes. Once the
TCMM map is created, an initial TCP population is generated
using any desired method. The initial population is given
to the mutant kill-based EA augmented with LS (MuKEA),
which uses APMK as the objective function. At the end of
each generation, further exploitation is done on the top k test
cases in the offspring. The k value is decided adaptively with
respect to the TCMM created in the beginning. Finally, as the
termination criteria is reached, the best TCP order is found to
be used in other testing purposes, such as regression testing.

Fig. 1: Pipeline of proposed MuKEA-TCP.

In this study, our hypothesis is that providing a TCP order
by a greedy method as an initial input into an EA augmented
with a LS procedure, improves the APMK result of that greedy
TCP method. Therefore, to investigate whether our hypothesis
is correct, we want to answer the following research questions.

RQ1: Does using an EA augmented with LS improve the
APMK results of an initially provided greedy TCP method
input? We perform an empirical study on using the greedy
TCP methods’ output as an input to the EA with and without
a LS procedure. Then, the APMK results are compared and
analyzed by using a statistical test.

RQ2: Does LS augmentation improves the APMK results
of an EA-based TCP method We want to investigate if an
LS augmentation has a significant improvement over the EA-
based TCP methods without a LS augmentation. We compare
the EA-based TCP methods with and without LS augmentation
and compare their APMK with a statistical test.

This paper makes the following main contributions:
(i) Method: We present an end-to-end pipeline for TCP that
uses mutation kill information with a LS augmented EA.
Mutant-based APMK is used as the objective function in
the proposed method, which has benefits over well-known
objective functions that are being used in the literature. Using
APMK metric allows addressing the following issues:

(a) Fault-based objective function APFD requires prior
knowledge of the faults, which cannot be known in real
scenarios. Whereas, the mutants can be injected to represent
faults without knowing the actual faults. If the real faults were
known, the prioritization would be trivial.

(b) Coverage-based objective functions APBC, APDC, and
APSC, which may not provide enough information for a test
case to measure its effectiveness on revealing faults. Whereas,
injecting mutants to represent possible faults of common fault
classes provides good guidance on revealing fault.
(ii) Tool: We develop and make a publicly available TCP1

tool. The tool implements the end-to-end pipeline of the TCP
method we present. Furthermore, we have included the greedy
TCP methods in our tools for comparison and reusability.
(iii) Dataset: We provide our mutation kill dataset to other
practitioners and for better reproducibility of our study.

II. RELATED WORK

Many studies use different meta-heuristic algorithms for
TCP utilizing different objective functions.Our literature study
has found that, ant colony optimization has been extensively
applied in TCP. Singh et al. [12] have used ant colony
optimization using APFD as an objective function. To pri-
oritize test cases, Lu et al. [13] used a hybrid ant colony
system with a sorting-based LS approach to accelerate the
convergence speed. Zhang et al. [14] have also used an ant
colony optimization on prioritizing test cases, based on a
novel coverage-based objective function they call eAPWC
(enhanced average percentage of win-Cost coverage). Bian et
al. [15] has proposed another ant colony based TCP that used
APSC for their objective function. In another study, the Firefly
algorithm [16] is used with the APFD measurement selected as
the objective function. Konsaard and Ramingwong [17] have
used genetic algorithms to prioritize test cases based on code
coverage.

Although meta-heuristic algorithms have been widely used
in TCP, coverage-based and fault-based objectives have been
used in majority, while only two of those works have used
mutation-based APMK as the objective function [5], [6] to
utilize mutant kill information. Using a mutant kill-based
objective function addresses some of the main issues of using

1https://github.com/ekincanufuktepe/mukea-tcp



fault-based and coverage-based objective functions in assess-
ment of the effectiveness of tests. The fault-based metrics need
faults to calculate the fitness, which cannot be known before
running the tests. In fact, if faults were known before running
the test cases, there would be no need for TCP. Moreover, the
coverage-based metrics tend to be unstable in revealing real
faults. This work proposes an approach where the advantages
of using a meta-heuristic algorithm and using a mutant kill-
based metric for objective function are combined for an end-
to-end TCP pipeline. A hybrid meta-heuristic algorithm is used
with parallelism for both improving the optimization result and
the timing performance of the proposed algorithm.

III. METHODOLOGY

A. Pre-processing and Initial Population Creation

The MuKEA-TCP pipeline takes a project with its test
suite as the input. Once there is a mutant kill report, a
TCMM is created. The TCMM map consists of a detailed
map in between the test cases and the mutants these test
cases kill. During the initial population creation, two greedy
approaches that are commonly used in TCP are selected: Total
and Additional [1]. We adapted these techniques for mutation
kill information as Total Mutant Kill Prioritization Technique
(TT) and Additional Mutant Kill Prioritization Technique (AT)
respectively. The TT and AT techniques are given below:
TT: Prioritize test cases in descending order of the number of
killed mutants. In other words, the test cases are sorted starting
from the test case that kills the most number of mutants, to
the test case that kills the least number of mutants. If there are
more than one test cases that kill the same amount of mutants
(a tie), the tied test cases are selected randomly and added to
the prioritization order.
AT: Prioritize test cases in descending order of the number of
mutants that are not killed yet (additionally killed mutants).
If there is more than one test case that additionally kills the
same amount of mutants (a tie), the tie is broken by randomly
selecting a test case and adding to the prioritization order.
After the randomly selected test case is added to the prioritized
list, the mutant kill information is updated to increase the
priority of other test cases that kill additional mutants that
haven’t been killed yet.

B. Mutant Kill-based Local Search Augmented Evolutionary
Algorithm (MuKEA)

The TCP search with APMK is the last step of the pro-
posed TCP pipeline, called MuKEA. The overall diagram of
MuKEA is given in Fig. 2. An initial population consisting
of permutation candidates is generated and given into the
algorithm as an input. Until the termination criteria is reached,
the fitness evaluation is done using mutant kill-based APMK
metric for current population. The best TCP candidates are
selected, with respect to the given mutation rate, a mutation
operation is performed on candidates with a given probability,
and with respect to given crossover rate, crossover operation is
performed on randomly selected parent candidates to generate
offspring. The evaluation, selection of the fittest, mutation

and crossover operations continue until the given termination
criteria is met. Finally, the TCP candidate with the highest
APMK value is returned as the best TCP candidate.

Fig. 2: Details of MuKEA.

1) Objective Function: APMK is a measure that is inspired
and modified from APFD [1]. Instead of measuring how fast
faults are detected, APMK measures how fast the mutants
are killed by the generated ordering. Higher values of APMK
indicate faster killed mutants. Formally, let T be the test suite
containing n test cases, and let M be the set of k mutants
revealed by T . For ordering T ′, let TMi be the order of the
first test case that reveals the ith mutant. The APMK value of
T ′ is calculated by the following Equation 1:

APMK = 1 − TM1 + · · ·+ TMk

nk
+

1

2n
(1)

2) Local Search Augmentation: Whenever an offspring is
generated after a crossover and mutation operation, it is
not always guaranteed to have better prioritized test cases.
Therefore, to increase the exploitation and the chances to
have better offspring, we augmented LS into the EA after the
offspring are generated. However, since LS is an expensive
process, it is generally limited with a specific number of
iterations. Additional information is acquired in the creation
of TCMM and the initial population. It can be used to refine
the LS domain and to adaptively perform the LS to improve
efficiency. Since we have the information of killer and non-
killer test cases, we can discard the non-killer test cases in the
current TCP candidate, assuming these test cases are already
at the last indexes in the current TCP order found by EA.
Thereby, if there are in total 25 non-killer test cases in the
TCMM, where we have a total of 100 test cases, the LS is
performed on the top 75% test cases in the current TCP order.

IV. CASE STUDY

We have performed our case study on five different open-
source Java Projects that are obtained from GitHub. These
projects are commonly used in software engineering related
research [18] to enable controlled testing studies. Since we are
not interested in the defects of the projects, we did not use
the versions that are provided by Defects4J [18]. Instead, we
obtained the latest versions of the projects from their original
repositories. The selected projects, their versions and SLOCs
(Source Lines of Codes) are given in Table I.



TABLE I: Selected Project and Mutant Information

Project name Version SLOC Killed Mut. Survived Mut.
jsoup 1.13.1 21K 2950 2131

commons-cli 1.4 7K 613 157
commons-codec 1.15 23K 2666 1374
commons-csv 1.8 7K 549 144
jackson-core 2.11.3 47K 7607 6441

A. Selection of Mutation Framework and Mutant Types

Since we selected open-source projects coded in Java for
our case study, we used a mutation framework called Pitest
[19] for the Java projects. It was reported that Pitest has
been designed to generate stable mutations and minimize the
number of equivalent mutants [20]. However, since that this
study only focuses on the killed mutants and not the mutation
score, equivalent mutants are not an issue for our method. On
the other hand, Pitest is a state-of-the-art mutation framework,
actively maintained and improved, and in addition, widely
used in the research community [21]–[23]. Therefore, in this
study we used Pitest (version 1.5.2) to generate mutants and
obtain a mutation kill report. To generate mutants, we used
the default mutator group, which includes 11 types of mutant
operators. For each project, the number of generated mutants,
the number of killed mutants and survived mutants are given in
Table I. In our case study, we calculated the APMK based on
the killed mutants and discarded the surviving mutants, since
that APMK is only interested in the killed mutants.

In Table II, we show the test case information for each
project, the number of killing test cases, which stands for the
number of test cases that kill at least one mutant. The number
of non-killing test cases is the number of test cases that does
not kill any mutant. Also, the total number of test cases and
the average execution time of the test suite are given.

TABLE II: Selected Project Test Information

Project name Killing
Test Cases

Non-Killing
Test Cases

Test
Cases

Execution
Time (Sec.)

jsoup 742 13 755 41.23
commons-cli 355 0 355 0.102

commons-codec 884 75 959 43.13
commons-csv 325 4 329 4.31
jackson-core 550 1 551 7.78

B. Selection and Usage of Meta-heuristic Framework for
Evolutionary Algorithm

We used Opt4J [24] to implement our MuKEA-TCP ap-
proach. In addition to EAs, Opt4J contains other meta-heuristic
algorithms such as; particle swarm optimization and simulated
annealing. There are several reasons we used Opt4J, which are;
its support for multi-threading, including various operators,
its extendable nature, and flexibility due to its dependency
injection pattern usage. Furthermore, Opt4J is written in Java.
Our mutation report parsing mechanism, greedy algorithm
implementations, are written in Java, making it easier to
integrate our implementation with Opt4J. Opt4J does not
include a LS mechanism, however, it has been mentioned in

[24], its mutate, copy or diversity operators can be used for
LS. In this study, we have extended Opt4J by implementing
a variation of EA augmented with a LS procedure that uses
multi-threading and swap operator.

C. MuKEA Implementation Details

In our MuKEA implementation, we use a permutation of
test IDs as the solution representation. The index of a test
case in this permutation is the order of execution for that
test. We use a standard EA that uses crossover and mutation
operators to generate offspring. We apply LS to each offspring
after crossover and mutation operators. The EA and operator
parameters are as follows: Alpha is 100, Mu is 25, Lambda is
25 with 100 generations. Crossover Operator is Bucket with
rate of 0.75, Mutation operator is Insert with Adaptive rate
starting at 0.30, and the Number of threads is 12.

To augment the LS approach to our EA-based TCP
approach, we extended the Opt4J framework, by adding
classes/modules for our MuKEA approach. Since LS is an
expensive approach, we fixed our LS iteration count to 20,
which can be modified. However, it is important to recall
that the LS is used on every offspring. At every iteration, 25
offspring are generated. These factors increase the execution
cost, therefore, we used a multi-threaded approach for each
offspring to reduce the cost. The LS cost can also be reduced
by decreasing the offspring (Lambda) or LS iteration size.

D. Compared Techniques and Evaluation

We compared our proposed method with random TCP and
two well-known greedy approaches that are given in Section
III-A, TT and AT. To calculate the lower bound for each
project’s TCP result, we run 50 ordered prioritized test suites
(RND). Each execution’s APMK are calculated and the mean
of 50 APMK is set as the lower bound to determine the
significance of the TCP methods. To find the best setup for
the EA-based TCP, we perform an empirical study by setting
up six different variations of the EA-based TCP methods. For
a population of n TCP order candidates:
EA-RND: Init. EA with n random order candidates.
EA-TT: Init. EA with population of 1 TT order candidate and
n− 1 random order candidates.
EA-AT: Init. EA with population of 1 AT order candidate and
n− 1 random order candidates.
EA-RND-LS: Init. MuKEA with n random order candidates.
EA-TT-LS: Init. MuKEA with population of 1 TT order
candidate and n− 1 random order candidates.
EA-AT-LS: Init. MuKEA with population of 1 AT order
candidate and n− 1 random order candidates.

Finally, we run each TCP method 50 times and calculate the
mean of APMK. Based on the APMK results we perform a
statistical test to find if there is a significant difference between
the TCP methods.

V. RESULTS AND DISCUSSION

The results of our case study is given in Table III, with a
Random approach (RND) as the lower boundary, two greedy



TABLE III: Mean of APMK Results for each Project

jsoup commons-cli commons-codec
Tech. Mean Rank Time Tech. Mean Rank Time Tech. Mean Rank Time

EA-AT-LS 96.4951 A 36.0552 EA-AT-LS 96.92 A 3.3931 EA-AT-LS 96.9017 A 39.9116
AT 96.4882 A 0.0523 EA-AT 96.8874 A 0.1610 EA-AT 96.8968 A 0.7459

EA-AT 96.4867 A 0.6409 AT 96.8819 A 0.0067 AT 96.8962 A 0.0493
EA-TT-LS 95.9204 B 41.7850 EA-TT-LS 96.6641 A 3.9633 EA-TT-LS 96.1197 B 56.0926

EA-RND-LS 95.8049 B 46.4945 EA-RND-LS 96.6455 A 3.8616 EA-RND-LS 95.9501 B 65.5146
EA-TT 90.7947 C 0.96 EA-RND 93.2338 B 0.1941 EA-TT 90.8819 C 1.1234

EA-RND 89.8979 D 1.0501 EA-TT 93.0070 B 0.1914 EA-RND 88.7861 D 1.8879
TT 87.7951 E 0.0226 RND 82.8897 C - TT 84.7481 E 0.015

RND 81.6273 F - TT 81.6634 D 0.0031 RND 76.4857 F -
commons-csv jackson-core

Tech. Mean Rank Time Tech. Mean Rank Time
EA-AT-LS 97.5538 A 2.7535 EA-AT-LS 93.3747 A 116.9351

EA-AT 97.5256 A 0.1440 AT 93.3637 A 0.1442
AT 97.5181 A 0.0041 EA-AT 93.3633 A 2.2564

EA-TT-LS 97.3915 A 2.8201 EA-TT-LS 92.8069 B 116.8809
EA-RND-LS 97.3593 A 2.9067 EA-RND-LS 92.7162 B 126.1468

EA-TT 94.2669 B 1.1724 EA-TT 87.4731 C 3.0605
EA-RND 93.8199 B 0.1676 EA-RND 84.8409 D 3.4552

TT 87.2646 C 0.0022 TT 84.2613 E 0.0153
RND 80.3624 D - RND 72.9723 F -

approaches (TT, AT) and six variations of the EA. AT performs
better than RND, AT-based methods perform better than those
that are based on TT, and EA utilizing LS is the best among the
AT-based methods. Moreover, adding LS improves the results
of all the other methods and using EA can improve the results
of TT-based methods significantly. However, performance im-
provement of EA is small for AT-based methods, since AT by
itself achieves very high APMK values.

To answer the RQ1 and RQ2, we performed a one-way
ANOVA on the APMK values with a significance level 0.05,
followed by a Tukey HSD posthoc test for grouping the
TCP methods. We ranked all TCP methods, from highest
A to lowest F, provided in Table III with the TCP APMK
mean results. EA-AT-LS has outperformed every TCP method.
However, there is no statistical significance between the top
three TCP methods: EA-AT-LS, EA-AT and AT, and in some
projects there are no significant difference with EA-TT-LS
and EA-RND-LS as well. It is important to acknowledge that
the AT approach is a powerful method, and achieves high
APMK results that are close to the global optimum. Yet, the
randomness in AT’s algorithm can prevent achieving the global
optimum. Therefore, we used an EA with and without a LS
procedure to find a better APMK. We have performed our
case study with same AT initial inputs in EA-AT and EA-AT-
LS. For EA-AT, we observed some improvements on some
AT inputs. On the other hand, when we provided the same AT
inputs to EA-AT-LS, we observed an improvement in all of our
50 executions on every project, which gave us the confidence
to say EA-AT-LS did improve the APMK results.

To answer RQ2 we used other LS augmented EA TCP
methods, EA-TT-LS and EA-RND-LS, to observe whether
they have improved the APMK results or not. In Table III,
we see there is a significant difference between EA-TT-LS
and TT, also between EA-RND-LS and RND. This shows
that augmenting LS into EA has improved the TCP methods
TT, RND, and also EA-TT and EA-RND. However, since we

have found that there is no significant difference between EA-
AT-LS and AT, we performed an empirical study where we
preserve the first 5%, 10% and 20% order of AT and shuffle the
remaining order of AT, performing 50 executions for each. Our
finding about AT and the projects, which is given in Table IV
show that there are super killer test cases that kill most of the
mutants. Therefore, there is not much of an improvement left
to be made for the EA-AT-LS approach, so the LS search space
can be easily reduced with an adaptive LS space. Therefore,
we have used the adaptive LS that uses the number of non-
mutant killing test cases and subtracts it from the size of the
test suite. In our future studies, we plan to extend the number
of projects for our case study to investigate the influences of
super killer test cases on EAs and AT.

TABLE IV: Mean of APMK for 5%, 10%, 20% and 100%
Preserved Initial Orders of AT for Each Project

AT
Project Name 5% 10% 20% 100%

jsoup 91.0855 93.1927 95.2729 96.4892
commons-cli 90.5772 93.9297 96.6262 96.8753

commons-codec 91.2480 94.2599 96.2225 96.8963
commons-csv 93.0221 95.4922 97.5127 97.5166
jackson-core 84.5319 88.2042 91.1852 93.3633

In Table III, the mean of execution times in seconds of each
TCP method are given for each project. All of the experiments
are carried out on an i7-10750H CPU 2.59GHz processor
with 16GB RAM computer. The execution time increases can
be seen in the LS augmented TCP methods in Table III.
However, due to the multi-threading LS implementation, the
execution times are reduced to an acceptable level, which is
a minimum of 2.7535 seconds and a maximum of 126.1468
seconds (approximately two minutes) among the projects.

A threat to validity is that our evaluations are only based
on 5 Java projects, by comparing on 9 approaches (2 greedy
approaches, 1 random, 6 different variations of EA-based
approaches). The evaluations we have made may not be



representative, causing our results not to be generalized. Our
approach might behave differently on different programs and
design, such as ones from different application domains or
those that are not written in Java.

Another threat to validity is that the greedy approaches
and the other TCP methods we have proposed have ignored
that there might be dependent test cases in the selected Java
projects. Therefore, each TCP approach that we have evalu-
ated in this study might have generated infeasible test cases
execution order, which can cause flaky tests [25]. Therefore,
in future we plan to find the dependent test cases and discard
the possibility to generating infeasible TCP orders.

VI. CONCLUSION AND FUTURE WORK

In this study we have proposed a LS augmented EA ap-
proach to prioritize test cases. Our approach has used APMK
as the objective function, which measures how fast mutants
are killed in a software. The LS augments the EA to enhance
the offspring (new ordered test cases) after the crossover and
mutation operators.

In total, we proposed 6 different EA-based TCP methods,
by providing three different initial inputs. We provided 3
types of initial inputs; random, order of TT, and order of
AT. Then, we used these 3 initial inputs on EA with and
without augmented LS. Furthermore, we have compared EA-
based TCP approaches with 2 well-known greedy approaches
(TT and AT), and random to determine the lower boundary.
We have compared these TCP methods on 5 different Java
projects, to see if LS improves the APMK score.

Our results have shown that EA-AT-LS (LS augmented EA
with AT order provided), has outperformed every TCP method.
Nevertheless, we have also observed that augmenting LS in
EA provided with greedy approach TCP orders as inputs has
been significantly improved. These improvements can be seen
on the TT and randomly generated orders trivially. However,
the improvements on AT orders, were very small. We have
observed that, even with a small preserved amount of AT
order, the APMK score wasn’t remarkably different than the
fully preserved AT order. This has shown us that there are
test cases that kills too many mutants in the program, which
does not give too many options for the augmented LS EA to
increase the APMK score. As future work, we plan to use a
multi-objective approach to prioritize test cases by taking into
account of dependent test cases.

REFERENCES

[1] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test
cases for regression testing,” IEEE Trans. Softw. Eng., vol. 27, no. 10,
pp. 929–948, 2001.

[2] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioritiza-
tion: A family of empirical studies,” IEEE Trans. Softw. Eng., vol. 28,
no. 2, pp. 159–182, 2002.

[3] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Trans. on Softw. Eng., vol. 33, no. 4,
pp. 225–237, 2007.

[4] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated
with test suite effectiveness,” in Int. Conf. on Softw. Eng., pp. 435–445,
2014.

[5] L. Gonzalez-Hernandez, B. Lindström, J. Offutt, S. F. Andler, P. Potena,
and M. Bohlin, “Using mutant stubbornness to create minimal and
prioritized test sets,” in IEEE Int. Conf. on Softw. Quality, Rel. and
Security, pp. 446–457, 2018.

[6] D. Shin, S. Yoo, M. Papadakis, and D.-H. Bae, “Empirical evaluation
of mutation-based test case prioritization techniques,” Softw. Testing,
Verification and Rel., vol. 29, no. 1-2, p. e1695, 2019.

[7] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?,” in ACM Int. Conf. on Softw. Eng.,
pp. 402–411, 2005.

[8] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage criteria,”
IEEE Trans. Softw. Eng., vol. 32, no. 8, pp. 608–624, 2006.

[9] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?,” in
ACM SIGSOFT Int. Symp. on Found. of Softw. Eng., pp. 654–665, 2014.

[10] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are they
to real faults?,” in IEEE Int. Symp. on Softw. Rel. Eng., pp. 189–200,
2014.

[11] M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are mutation scores
correlated with real fault detection? a large scale empirical study on the
relationship between mutants and real faults,” in IEEE/ACM Int. Conf.
on Softw. Eng., pp. 537–548, 2018.

[12] Y. Singh, A. Kaur, and B. Suri, “Test case prioritization using ant colony
optimization,” ACM SIGSOFT Softw. Eng. Notes, vol. 35, no. 4, pp. 1–7,
2010.

[13] C. Lu, J. Zhong, Y. Xue, L. Feng, and J. Zhang, “Ant colony system with
sorting-based local search for coverage-based test case prioritization,”
IEEE Trans. on Rel., 2019.

[14] W. Zhang, Y. Qi, X. Zhang, B. Wei, M. Zhang, and Z. Dou, “On test
case prioritization using ant colony optimization algorithm,” in IEEE
Int. Conf. on High Perform. Comput. and Commun.;IEEE Int. Conf. on
Smart City;IEEE Int. Conf. on Data Sci. and Syst., pp. 2767–2773, 2019.

[15] Y. Bian, Z. Li, R. Zhao, and D. Gong, “Epistasis based aco for regression
test case prioritization,” IEEE Trans. on Emerging Topics in Comput.
Intell., vol. 1, no. 3, pp. 213–223, 2017.

[16] M. Khatibsyarbini, M. A. Isa, D. N. Jawawi, H. N. A. Hamed, and
M. D. M. Suffian, “Test case prioritization using firefly algorithm for
software testing,” IEEE Access, vol. 7, pp. 132360–132373, 2019.

[17] P. Konsaard and L. Ramingwong, “Total coverage based regression test
case prioritization using genetic algorithm,” in IEEE Int. Conf. on Elect.
Eng./Electron., Computer, Telecommun. and Inf. Technol., pp. 1–6, 2015.

[18] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in ACM
SIGSOFT Int. Symp. on Softw. Testing and Anal., pp. 437–440, 2014.

[19] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “Pit:
a practical mutation testing tool for java,” in Int. Symp. on Softw. Testing
and Anal., pp. 449–452, 2016.

[20] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. Le Traon, and
A. Ventresque, “Assessing and improving the mutation testing practice
of PIT,” in IEEE Int. Conf. on Softw. Testing, Verification and Validation,
pp. 430–435, 2017.

[21] Q. Luo, K. Moran, D. Poshyvanyk, and M. Di Penta, “Assessing test
case prioritization on real faults and mutants,” in IEEE Int. Conf. on
Softw. Maintenance and Evolution, pp. 240–251, 2018.

[22] Q. Luo, K. Moran, L. Zhang, and D. Poshyvanyk, “How do static and
dynamic test case prioritization techniques perform on modern software
systems? an extensive study on github projects,” IEEE Trans. Softw.
Eng., vol. 45, no. 11, pp. 1054–1080, 2018.

[23] J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, and L. Zhang,
“Optimizing test prioritization via test distribution analysis,” in ACM
Joint Meeting on European Softw. Eng. Conf. and Symp. on the Found.
of Softw. Eng., pp. 656–667, 2018.

[24] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich, “Opt4j: a modular
framework for meta-heuristic optimization,” in Annual Conf. on Genetic
and Evolutionary Computation, pp. 1723–1730, 2011.

[25] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie, “Dependent-
test-aware regression testing techniques,” in ACM SIGSOFT Int. Symp.
on Softw. Testing and Anal., pp. 298–311, 2020.


