
Code Change Sniffer: Predicting Future Code
Changes with Markov Chain
Ekincan Ufuktepe

University of Missouri - Columbia
Columbia, MO, USA
euh46@missouri.edu

Tugkan Tuglular
Izmir Institute of Technology

Izmir, Turkey
tugkantuglular@iyte.edu.tr

Abstract—Code changes are one of the essential processes of
software evolution. These changes are performed to fix bugs,
improve quality of software, and provide a better user experience.
However, such changes made in code could lead to ripple
effects that can cause unwanted behavior. To prevent such issues
occurring after code changes, code change prediction, change
impact analysis techniques are used. The proposed approach
uses static call information, forward slicing, and method change
information to build a Markov chain, which provides a prediction
for code changes in the near future commits. For static call
information, we utilized and compared call graph and effect
graph. We performed an evaluation on five open-source projects
from GitHub that varies between 5K-26K lines of code. To
measure the effectiveness of our proposed approach, recall,
precision, and f-measure metrics have been used on five open-
source projects. The results show that the Markov chain that is
based on call graph can have higher precision compared to effect
graph. On the other hand, for small number of cases higher recall
values are obtained with effect graph compared to call graph.
With a Markov chain model based on call graph and effect graph,
we can achieve recall values between 98%-100%.

Index Terms—change impact analysis, markov chains, software
evolution, change propagation prediction

I. INTRODUCTION

Code change prediction is an estimation of to be modified
code segments in near future. Change prediction plays an
important role in reducing the amount of time and resources
that are spent on software maintenance. In this study, we
propose a novel approach for change prediction based on
(i) Markov chain that uses (ii) forward slicing information
for calculating the probability of effect after a change, and
as the graph structure from which we construct the Markov
chain, we utilized (iii) call graph (CG) and effect graph (EG).
CG only includes the change propagation/effect direction in
one way and disregards the impacts from callee methods via
return values. To include the impacts from callee methods, we
introduce EG, which is a bi-directional version of CG. Both
CG and EG represent the dependencies between methods and
how the change could propagate in the software to cause other
methods to change.

For change impact analysis, previous studies have focused
on file-level [1], [2] or class-level [3], [4] granularities. How-
ever, a class or file-level granularity may not precisely point
out which software components are impacted or affected. Files
and classes may include multiple classes and methods. Assume

that there is a class with ten methods, and the class is predicted
as impacted or affected, and assume that only one of the ten
methods is impacted. There will be a 1/10 chance to find
and know which method is actually impacted. Therefore, in
this study, we performed our predictions at a finer granularity
level, i.e., at method granularity. To work at method-level
granularity, we use CG and EG, of which details are discussed
in the following sections.

Previous studies have used Bayesian Network (BN) to
calculate change propagation [5] and perform change impact
analysis [6], [7]. Even though that BNs are powerful proba-
bilistic reasoning systems under uncertainty, they have very
high complexity, and lack representing cycles. For instance,
a study [6] had to remove cycles (dependencies) to used
BN, which might have caused to lose valuable information.
Therefore, in our study we used Markov chain, which is
commonly used in making predictions. However, the main
factor of using Markov chain is that it allows representing
and using cycles, and it has a lower complexity.

Program slicing is also used in change impact analysis [6],
[8], [9]. Especially, forward slicing is well-known to be used
for finding the affected components after a change. Since our
goal is to predict future code changes, we use forward slicing
to find the affected statements in the control-flow graph. After
the affected statements are found, we calculate the percentage
of a method being affected by a change.

To measure and evaluate the success of a code change pre-
diction approach, ground-truth data is required. For instance,
a study used mutation testing and failed test cases for ground-
truth and evaluation [10]. The drawback of using test cases
is that test cases applied on real systems may not have 100%
coverage all the time. Furthermore, this approach depends on
the quality of the test cases, which could be a case where not
all the mutants can be eliminated. Another study employed
the diff between two consecutive versions as ground-truth and
utilized the commits between the two consecutive versions
for analysis [6]. In this study, we have used the diff of two
consecutive versions on their bytecode, since that there could
be change in due to the compiler.

RQ1: Does use of effect graph instead of call graph in
predicting future code changes make a difference? How
are the precision, recall, and f-measure values affected? We
use our approach both on CG and EG and compare their

effectiveness by their recall, precision, and f-measure values.
RQ2: Does applying a threshold on the effect proba-

bilities of methods improve the recall, precision, and f-
measure values? We assume that a changed method can affect
all its reachable methods based on a CG and an EG. Since our
approach provides probabilistic values for reachable methods,
in predicting future code changes, we have the opportunity
not to include the methods that are under some probabilistic
value. This way, we investigate whether applying a threshold
to disregard some of the methods makes a difference in the
precision, recall, and f-measure values.

This paper makes the following main contributions:
(i) Method: We present an end-to-end pipeline for pre-

dicting future code changes that might occur in a software
evolution process. For our prediction system, our method uses
Markov chain. Then, with respect to the relationships between
methods (CG and EG), the transition matrix of the Markov
chain is filled with probabilistic information that is obtained
from forward slicing. The initial vector uses the calculated
diff ratio for each method. After the multiplication between
the initial vector and transition matrix the impact vector is
calculated, in other words the predicted methods that will
change in future.

(ii) Tool: We developed a tool called Code Change Sniffer
(CCS)1 and made it publicly available for predicting future
code changes. The tool implements the end-to-end pipeline
for predicting future code changes with Markov chain.

(iii) Dataset: We provide our evaluation dataset to other
researcher and practitioners to provide a better reproducibility
of our study. Our dataset contains data for each studied project
that includes ground-truth data, predicted changed methods
with probabilistic values. Furthermore, the type of changes
for each commit are tagged by types given in [11].

II. PROPOSED APPROACH

In this section, we describe our proposed approach, and how
the change and program slicing information are utilized.

A. Change Information

Our approach is based on an assumption that to predict the
method(s) that will change in future commits, it is necessary
to know which method(s) has already been changed in the past
and current commits. The change information is obtained by
using diff with a tool called reJ. It is a code diff visualization
tool that shows the code changes in bytecode at class-level
granularity. Obtaining the changed code in bytecode is very
important, since different styles of coding can be represented
in different sizes of LOC (Lines of Code) and visually can be
interpreted as a change.

Since our proposed approach is at method-level granularity,
we modified reJ to provide change information at method-
level granularity. To extract the change information and use
it in Markov chain, we calculate the percentage of change
performed on each method as given in Equation 1, where M

1https://github.com/ekincanufuktepe/code-change-sniffer

is a set of changed methods that exists in a software, where
cmi is a changed method and an element of set M . The n is
the total number of changed methods between two commits.
In other words, n is the size of set M . The P (cmi) represents
the probability of method cmi being affected by the changes
that are made internally.

cmi ∈M, 0 < i ≤ n

P (cmi) =
Total num. of changed stmts

Total Num. of changes and unchanged stmts
(1)

The information extracted through this process is assigned
to the initial (impact) vector. The change information is also
used in transition matrix of CG, where there is a self-loop
represented in change prediction model.

B. Effect Probability Information

Forward slicing information is used for methods that has call
relationship, which can affect each other through parameter
passing or method returns. Therefore, we apply forward slicing
on two types of variables for each method: method parame-
ters and method returns. The forward slicing on the method
parameter represents the change flow from caller method to the
callee method. The forward slicing applied on the return value
represents the change flow from callee method to the caller
method. The forward slicing is used on the CFG of methods.
Thereby, we calculate the probability of change based on the
sliced CFG.

The forward slicing applied on the method parameters
has a straightforward approach. Since the method parameters
are defined in the first statements of the CFG, the forward
slicing starts from the first statement to the last statements
(leaf nodes). After the sliced CFG is obtained, we calculate
the probability of the possible change that could occur in
the method. The probability is calculated by dividing the
remaining statements in CFG after slicing to the total number
of statements that exist in the CFG before slicing. We recall
that each method has its own CFG, which is consisted of
statements. Thereby, let CFGmi be a set of statements of
method mi and let stmmik

be the statements in the CFG.
Then, in Equation 2, let pCFGmi

be the parameter-based
sliced CFG of CFGmi

, which is also a subset of CFGmi
. The

calculation of change probability for parameter-based forward
slicing is given in Equation 3. For methods that does not have
any parameters, the probability of change is set to 0.

CFG(mi) = {stmmik
: 0 < k ≤ |CFGmi

|,mi ∈M}
where pCFGmi

⊆ CFGmi

(2)

P (mi) =
|pCFGmi |
|CFGmi

|
(3)

For the return-based forward slicing, we require the callee
methods and where the method is called in the CFG. The next
information of where callee methods are called in the CFG,
requires a parsing process, to locate the statements (nodes)
in the CFG. After where the callee methods are called in

the CFG are located, we use located statements in the slicing
criterion for each callee method separately. For instance, if a
caller method calls three different methods, the forward slicing
runs once for each callee method, which makes three forward
slicing executions in total.

We formalize the calculated probabilities for each callee
method’s effect on the caller method as follows. Let mi be the
caller method and mj the callee method. Then, let rCFGmimj

be the return-based sliced CFG of method mi, which is also
a subset of CFGmi

. To calculate the change probability from
the possibility effect of return values from callee methods, we
divide the remaining statements in the CFG after the return-
based forward slicing by the total number of statements before
slicing. The probability calculation is given in Equation 4. In
some cases, the callee method may not have a return type (i.e.,
void methods). In such cases, the CFG is not be assigned
to a variable or return a value. Therefore, since there is no
assignment the forward slicing algorithm will not proceed, and
the probability will be set to 0.

where rCFGmimj
⊆ CFGmi

P (mimj
) =
|rCFGmimj

|
|CFGmi

|
(4)

After all the slicing information is collected and proba-
bilities are calculated, we assign all the probabilities to the
transition matrix. For the CG, all the edge directions are from
caller method to callee method, which means the effect direc-
tion is from caller method to callee method Therefore, only
necessary information that is assigned to the transition matrix
will be the probabilities that are calculated from parameter-
based forward slicing information. On the other hand, EG
contain possible change effects from caller to callee method
and callee method to caller method. Thereby, both parameter-
based and return-based forward slicing information will be
assigned to the transition matrix.

C. Proposed Code Change Prediction Method

In Fig. 1, we provide the architecture and pipeline of our
code change prediction method. Our approach first starts by
extracting the CG of one of the commits after the Nth version
(within (N + 1)th version) and finding the code changes
between the Nth and within (N + 1)th versions. Then, we
generate CFGs for each method in and perform a forward
slicing on the commit within (N+1)th version. After the nec-
essary information is collected, we create two alternative code
change prediction models based on Markov chain, namely CG
and EG. To create an EG, we utilize already extracted CG.
When both Markov chain models are constructed, we create
the transition matrix, which is also similar to an adjacency
matrix, only that the connected methods (nodes) are encoded
with probabilistic information (Equations 2-4).

The transition matrix for CG only uses probabilistic infor-
mation from Equation 2, since the CG only contains effect
from caller to callee via parameters. The transition matrix for
EG uses probabilistic information from Equations 2-4, since

that EG includes change affects from caller to callee, and from
callee to caller (return methods).

Finally, we set the initial (impact) vector based on proba-
bilistic information obtained from Equation 2 and multiply the
initial vector with the transition matrix. Since that the multipli-
cation is between a vector and a square matrix, the complexity
is O(n2). The output of the multiplication provides a vector
output, which represents a list of code change probabilities,
with respect to the changes that are made in the software.

III. EVALUATION

In this section, we introduce the open-source projects we se-
lected for evaluation and provide the results for our approach.
We first mention how we select the version control system and
then, describe how we extracted the commits for each project.
Finally, we describe the metrics that are used for evaluation
and discuss the results obtained.

A. Open Source Project Selection and Evaluation Metrics

We selected five popular open-source Java projects
from GitHub, with different project sizes: commons-codec,
commons-csv, JJWT, Jsoup, and JUnit4. We chose consecutive
two versions of each selected project, where there is a signifi-
cant amount of commits in between two consecutive versions
with significant amount of source code changes.

Table I provides details of the selected open-source projects.
The fourth column in Table I gives the total number of
commits between two consecutive versions of each project.
The data in the fifth column represents the total number of
commits that contain source code changes among the commits
given in the fourth column. The fifth column data is collected
manually on GitHub. However, for JUnit4 we have selected
the commits that merged the source code changes, hence the
changes were made independently that caused next commits
to omit the previous commits. Since the other projects were
not that big, merge was not used, and every commit included
previous commits. After all the source code change included
commits are determined, these commits are downloaded based
on the hash value of the commit and analyzed. The fifth
column also represents the number of analysis we performed
for evaluation of our approach.

TABLE I: Selected open-source projects

Project LOC Analyzed
versions

Total
commits

Commit w/
Code Changes

commons-codec 23K 1.14–1.15 91 34
commons-csv 7K 1.7-1.8 82 34

JJWT 5K 0.6.0-0.7.0 80 31
Jsoup 18K 1.10.3–1.11.1 92 70
JUnit4 26K r4.11–r4.12 700 54

There are three commonly used metrics in evaluating the
success of prediction results. These metrics are Recall, Preci-
sion, and F-Measure. Recall is a metric used to quantify the
number of positive class predictions made from all positive
examples in the dataset. On the other hand, Precision is a
metric used to quantify the number of positive predictions

Fig. 1: Code Change Sniffer: future code change prediction pipeline

that actually belong to the positive class. Finally, we used
F-Measure for balancing the concerns of recall and precision
in a single numeric representation. However, according to a
study, having a higher recall value is always more desired
than Precision [12]. The reason is, even if a 100% precision
is achieved, but with a low recall value, then this means that
an impacted method is missed. A missed impacted method is
not tolerable in terms of the cost of maintenance.

B. Results and Discussion

Table II presents the mean and standard deviation values
of precision, recall, f-measure for both CG-based (MC CG),
and EG-based (MC EG) Markov chain code change pre-
diction techniques. To answer our research question RQ1,
we have compared two Markov chain-based code change
prediction techniques. The mean and standard deviation values
are calculated based on the precision, recall, and f-measure
for each commit of all five projects. Furthermore, to answer
our research question RQ2, we performed an empirical study
using three different thresholds by only accepting the higher
probability than the threshold, which is also given in Table II.
The highest mean values in Table II are shown in bold font.

Table II shows that, in terms of precision, using CG as
Markov chain model performs mostly better than using EG.
On the other hand, using EG as a Markov chain model mostly
performed better than CG since it also includes the change
propagation that might occur from callee (return).

Here, we describe our observations and answer our research
questions given in Section I.

RQ1: Does use of effect graph instead of call graph in
predicting future code changes make a difference? How
are the precision, recall, and f-measure values affected?
To observe the differences between two different graphical
models of change effect relationship, we used CG and EG

on five different open-source Java projects with three different
thresholds. As seen in Table II, there is a result for each one
of the 90 (5 projects, 2 models, 3 thresholds, 3 metrics) cases.
Out of the 90 cases, 45 of them belong to the model EG, and
while we compare the 45 cases of EG with the other 45 cases
of CG, using model EG has performed better on 14 out of the
45 cases, and performed equal with CG on 3 of the cases.

According to the results in Table II, where the cases that
EG did not perform well than CG has a very small difference
between EG, except for project JUnit4, where a threshold 0.2
is used. JUnit4 is the largest project we have studied, and it
contains too many changes. The applied threshold 0.2 is high
for JUnit4, which discards the actual changes that are even
found by diff and causes the recall to decrease. For instance,
changes that are made in the method that are below the 0.2
ratio will be discarded.

Using the CG model provides a better precision result
compared to using the EG. Comparing the two models with
respect to the f-measure, we can say that CG has performed
better than EG except for the project JJWT. However, we
have observed different development style on the project
JJWT compared to the other projects. This outcome can be
interpreted that the JJWT project has been developed in way
that the changes made in the callee methods have affected the
caller methods. In other words, the change affect is not only
limited by the flow of calling methods, but also affected by the
returning values from callee methods, which can be observed
by the precision, recall and f-measure results. Thereby, with
respect to the results, the usage of the model may depend
on how the software has been implemented, to make such
generalization we require an extensive case study with a larger
set of projects. If a software is implemented in a way that relies
on returning values, using EG might be a better option than
using CG. However, if the implementation does not rely on the

TABLE II: Mean and Standard Deviation values of Precision, Recall and F-Measure for CG and EG Markov Chain Code
Prediction Techniques on each Project with Different Thresholds

Technique commons-codec commons-csv JJWT Jsoup JUnit4

T
hr

es
ho

ld
=0

.0 MC CG Precision 0.1215±0.0185 0.3742±0.2571 0.5750±0.2827 0.5319±0.1326 0.9541±0.0352
MC EG Precision 0.0927±0.0155 0.0930±0.0762 0.6158±0.2549 0.4231±0.1116 0.7809±0.0333

MC CG Recall 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 0.9322±0.1276 1.0000±0.0000
MC EG Recall 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 0.9270±0.1252 1.0000±0.0000

MC CG F-Measure 0.2162±0.0300 0.4919±0.2817 0.6922±0.2131 0.6663±0.1373 0.9762±0.0183
MC EG F-Measure 0.1692±0.0264 0.1613±0.1279 0.7335±0.1829 0.5697±0.1126 0.8766±0.0208

T
hr

es
ho

ld
=0

.1 MC CG Precision 0.1378±0.0234 0.3366±0.1852 0.5681±0.2874 0.5510±0.1305 0.9565±0.0351
MC EG Precision 0.1378±0.0248 0.2224±0.1575 0.6102±0.2585 0.5022±0.1298 0.9357±0.0354

MC CG Recall 0.9531±0.0281 0.7486±0.2523 0.9710±0.0341 0.8566±0.1383 0.9326±0.0101
MC EG Recall 0.9814±0.0168 0.8189±0.1828 0.9655±0.0218 0.8707±0.1482 0.9331±0.0096

MC CG F-Measure 0.2402±0.0372 0.3873±0.1231 0.6804±0.2209 0.6619±0.1361 0.9439±0.0135
MC EG F-Measure 0.2407±0.0390 0.2998±0.1766 0.7176±0.1798 0.6267±0.1352 0.9339±0.0140

T
hr

es
ho

ld
=0

.2 MC CG Precision 0.1334±0.0333 0.3294±0.1655 0.5251±0.3123 0.6250±0.1277 0.9564±0.0366
MC EG Precision 0.1308±0.0401 0.2294±0.1545 0.5689±0.2825 0.5522±0.1321 0.9409±0.0405

MC CG Recall 0.6944±0.0963 0.6998±0.3005 0.6784±0.0908 0.7424±0.1380 0.8610±0.0163
MC EG Recall 0.7027±0.1326 0.7714±0.2290 0.6984±0.1059 0.7352±0.1483 0.8213±0.0416

MC CG F-Measure 0.2233±0.0523 0.3632±0.0798 0.5242±0.1376 0.6722±0.1321 0.9055±0.0109
MC EG F-Measure 0.2199±0.0640 0.2953±0.1540 0.5689±0.1034 0.6223±0.1344 0.8752±0.0120

return values, but relies on the parameters that are passed, then
there is a higher likelihood to achieve better recall, precision,
and f-measure results with by using CG.

RQ2: Does applying a threshold on the effect proba-
bilities of methods improve the recall, precision, and f-
measure values? We obtained low precision result for two
projects; namely commons-codec, where the precision ranged
between 0.05-0.18 for the complete software evolution process
from one version to another, and commons-csv, where the
precision has ranged between 0.017-0.17 for the first half of
the evolution process. Therefore, we observe the changes in
f-measure, recall, and precision measures to see if it can be
improved by applying a threshold. We used three thresholds:
0, 0.1, and 0.2. The thresholds are used for discarding methods
that has a probability that are equal or less than the specified
threshold. We observed that applying thresholds 0.1 and 0.2
decreased or did not affect improved the precision, recall,
and f-measure results for CG model. Therefore, using the
CG model with a threshold above 0 may not improve the
effectiveness of precision, recall and f-measure for change
prediction that much. On the other hand, we used the same
thresholds for with the EG model, and we observed im-
provements especially on the precision, but decrease on the
recall values. However, since that both recall and precision
measurements represent different aspects, we observed if there
is an actual improvement in overall, by observing the changes
in f-measure. For the f-measure, our observations found that,
among the three studied thresholds, 0.1 has performed the best
with EG. However, we do not have sufficient information if
EG would perform with another threshold. Therefore, we used
an adaptive threshold calculation that used the median of the
dataset of calculated method change effect probabilities. The
median for each project was calculated 0, which is exactly one
of the same thresholds we used in our evaluation. To find the
global optima that works efficiently with EG requires further
study on a larger set of projects.

Overall, using thresholds 0.1 and 0.2 did not improved

the CG model results. However, using a 0.1 threshold has
improved the EG model results in predicting code changes.
While comparing the effectiveness of the code change predic-
tion results of the models CG and EG, we have observed that
the way how the software is developed may influence results.
For instance, based on the f-measure, using the EG on project
JJWT is found effective than CG, while CG is found more
effective in code change prediction for the remaining four
projects. However, for both models, using two of the models,
we can detect 98%-100% of the future code changes after half
of the software evolution process is complete.

IV. THREATS TO VALIDITY

In this section, we discuss the limitations of our overall
evaluation that involves our external and internal validity.

External Threats: In our evaluation, where we evaluated
recall, precision, and f-measure, we obtained similar graph
results for recall. However, we could not make any gen-
eralization on the precision results. This is because of the
variety of results we obtained for the five projects studied
on. For instance, precision results for commons-codec are
ranging between 0.07 and 0.14, while ranging between 0.77
and 0.89 for JUnit4. We believe that the types of changes
that are made in the projects influences the precision results.
However, to make such conclusion, further experiments on
multiple projects are required with detailed investigation on
the method change types, which we have initiated and included
the change types for each commit and shared the data publicly.

Internal Threats: Our other limitation involves internal
validity. We encode the Markov chain with probabilistic infor-
mation that is obtained from forward slicing. We used forward
slicing on CFG, that we used focuses only on the method
parameters and return values. This approach disregards the
changes made on the class attributes and global variables.
The changed class attributes could be changed by a method,
and these changed attributes could be used in crucial parts
of another method that could affect the method. This study

does not take into consideration these types of changes. To
consider such types of changes for prediction, rather than
CFGs, program dependence graphs (PDGs) could be more use-
ful. However, PDGs are huge and complex graphs. Applying
forward slicing and performing a Markov chain prediction will
increase the complexity.

V. RELATED WORK

Several approaches attempted to predict code changes by
mining software repositories on concurrent versions system
(CVS) logs. For instance, Zimmermann et al. [13] used CVS
logs to detect evolutionary coupling between fine-grained
source code entities such as functions or variables, where
evolutionary coupling was the implicit relationship between at
least two software entities that are frequently changed together
[14]. They used association rules on an itemset of change sets
to predict code changes. Before evolutionary coupling, there
has been studies on detecting logical coupling and change
patterns [15] and German et al. [16] studied the characteristics
of the change types. Hassan and Holt [17] analyzed CVS logs
by using heuristics to predict software changes.

Some studies focused on using probabilistic approaches for
predicting software code changes. Tang et al. [7] proposed a
change impact analysis technique that is based on architectural
design decisions and elements. They have used BN to quantify
the relationships and elements of the design. On the other
hand, Abdi et al. [18] proposed a change impact analysis tech-
nique that estimates the overall impact of an object-oriented
system by using BNs. They used BN by using coupling metrics
that refer to two other metrics Design and Implementation.
Then, based on the Design and Implementation they quantify
the impact on the software. Mirarab et al. [5] used BNs in
a different approach, by using a dependency history model.
They used change history from CVS and dependency metrics,
which they collected with static analysis.

VI. CONCLUSION

In this study, we proposed a code change prediction ap-
proach with a pipeline based on Markov chain that uses
forward slicing, CG, and method change information. We
have used two models call graph (CG) and effect graph (EG)
to compare their effectiveness. We have also shared publicly
the code of our approach and pipeline, and the dataset. The
effectiveness of each model has been compared by their recall,
precision, and f-measure results.

In our evaluation, we investigated five open-source Java
projects. Each project had different number of commits
between two consecutive versions, with different types of
changes. For each commit, the type of changes was tagged by
the change types. We used three different thresholds on two
models, to observe the changes in the precision, recall, and f-
measure results. Our observations shown that the selection of
model depends on how the software has been implemented. If
the software is implemented in a way where methods mostly
rely on the returns of callee methods, then the model EG
should be selected. However, if the methods mostly rely on

the parameters that are passed, then the model CG should be
selected. In terms of using a threshold, CG is not affected
by applying a threshold. On the other hand, the model EG
produces more data. Therefore, using a threshold for EG in-
creases the precision, but decreases the recall value. Regarding
the studied three thresholds, based on the f-measure results,
using 0.1 is the best threshold for EG. Our results have also
shown that after 50% of the software evolution process from
one version to another is complete, both EG and CG models
can detect 98%-100% of the changed methods. Our future
plans to investigate the type of changes that are made in the
code, to understand and observe their impacts to enhance our
approach, achieve higher effectiveness.

REFERENCES

[1] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “Using multivari-
ate time series and association rules to detect logical change coupling:
An empirical study,” in IEEE Int. Conf. on Softw. Maintenance, pp. 1–
10, 2010.

[2] M. Ceccarelli, L. Cerulo, G. Canfora, and M. Di Penta, “An eclectic
approach for change impact analysis,” in ACM/IEEE Int. Conf. on Softw.
Eng., vol. 2, pp. 163–166, 2010.

[3] L. C. Briand, J. Wust, and H. Lounis, “Using coupling measurement
for impact analysis in object-oriented systems,” in IEEE Int. Conf. on
Softw. Maintenance, pp. 475–482, 1999.

[4] M. Gethers and D. Poshyvanyk, “Using relational topic models to
capture coupling among classes in object-oriented software systems,”
in IEEE Int. Conf. on Softw. Maintenance, pp. 1–10, 2010.

[5] S. Mirarab, A. Hassouna, and L. Tahvildari, “Using bayesian belief
networks to predict change propagation in software systems,” in IEEE
Int. Conf. on Program Comprehension, pp. 177–188, 2007.

[6] E. Ufuktepe and T. Tuglular, “A program slicing-based bayesian network
model for change impact analysis,” in IEEE Int. Conf. on Softw. Quality,
Reliability and Security, pp. 490–499, 2018.

[7] A. Tang, A. Nicholson, Y. Jin, and J. Han, “Using bayesian belief
networks for change impact analysis in architecture design,” Journal
of Systems and Softw., vol. 80, no. 1, pp. 127–148, 2007.

[8] E. Alves, M. Gligoric, V. Jagannath, and M. d’Amorim, “Fault-
localization using dynamic slicing and change impact analysis,” in
IEEE/ACM Int. Conf. on Automated Softw. Eng., pp. 520–523, 2011.

[9] M. Acharya and B. Robinson, “Practical change impact analysis based
on static program slicing for industrial software systems,” in IEEE Int.
Conf. on Softw. Eng., pp. 746–755, 2011.

[10] V. Musco, M. Monperrus, and P. Preux, “A large-scale study of call
graph-based impact prediction using mutation testing,” Softw. Quality
Journal, vol. 25, no. 3, pp. 921–950, 2017.

[11] X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang, “Change impact analysis
based on a taxonomy of change types,” in IEEE Annual Computer Softw.
and Applications Conf., pp. 373–382, 2010.

[12] R. S. Arnold and S. A. Bohner, “Impact analysis-towards a framework
for comparison,” in IEEE Conf. on Softw. Maintenance, pp. 292–301,
1993.

[13] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Trans. Softw. Eng.,
vol. 31, no. 6, pp. 429–445, 2005.

[14] S. Kirbas, B. Caglayan, T. Hall, S. Counsell, D. Bowes, A. Sen, and
A. Bener, “The relationship between evolutionary coupling and defects
in large industrial software,” Journal of Softw.: Evolution and Process,
vol. 29, no. 4, p. e1842, 2017.

[15] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in IEEE Int. Conf. on Softw. Maintenance
(Cat. No. 98CB36272), pp. 190–198, 1998.

[16] D. M. German, “An empirical study of fine-grained software modifica-
tions,” Empirical Softw. Eng., vol. 11, no. 3, pp. 369–393, 2006.

[17] A. E. Hassan and R. C. Holt, “Predicting change propagation in software
systems,” in IEEE Int. Conf. on Softw. Maintenance, pp. 284–293, 2004.

[18] M. Abdi, H. Lounis, and H. Sahraoui, “Predicting change impact
in object-oriented applications with bayesian networks,” in IEEE Int.
Computer Softw. and Applications Conf., vol. 1, pp. 234–239, 2009.

