
A Program Slicing-based Bayesian Network Model

for Change Impact Analysis

Ekincan Ufuktepe

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkey

ekincanufuktepe@iyte.edu.tr

Tugkan Tuglular

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkey

tugkantuglular@iyte.edu.tr

Abstract—Change impact analysis plays an important role in

identifying potential affected areas that are caused by changes that

are made in a software. Most of the existing change impact analysis

techniques are based on architectural design and change history.

However, source code-based change impact analysis studies are

very few and they have shown higher precision in their results. In

this study, a static method-granularity level change impact

analysis, that uses program slicing and Bayesian Network

technique has been proposed. The technique proposes a directed

graph model that also represents the call dependencies between

methods. In this study, an open source Java project with 8999 to

9445 lines of code and from 505 to 528 methods have been analyzed

through 32 commits it went. Recall and f-measure metrics have

been used for evaluation of the precision of the proposed method,

where each software commit has been analyzed separately.

Keywords—change impact analysis; program analysis; bayesian

network

I. INTRODUCTION

Software modification and evolution has become an integral
part of software development process. It has become
competitive and challenging among organizations to keep up
with the frequent changes in technologies, trends and fulfilling
customer’s frequently changing demands. These frequent
changes cause serious changes in source codes. For instance,
showing that change is continual in programming and intensive,
it has been mentioned that Google performs more than 20 code
changes per minute [1]. Furthermore, 50% of their code changes
every month. On the other hand, in a software development life
cycle, software maintenance has been described as the most
difficult, expensive and labor-intensive process [2]. Therefore,
in terms of time, effort and cost, it is important to locate and
predict the possible effected codes after a change is committed.
To locate the possible effected codes, change impact analysis is
used.

In literature, it has been observed that, proposed approaches
on change impact analysis (CIA) performed their prediction by
focusing on mining change history and previous version of
repositories [3], [4] . However, late and few studies have shown
that dependency-based CIA techniques have focused on source
code level [5]. The advantage of source code-based CIA
techniques is that they identify the change impact in the final
program source code. Furthermore, it is possible that they can

improve the precision of the change impact analysis results
because they directly analyze implementation details.

In this paper, a new model called Change Effect Graph
(CEG) has been proposed. Change Effect Graph is a source code
level, dependency-based model that is used for CIA. It uses
program slicing, call graph and change information in a
Bayesian Network.

The paper is organized as follows. In Section II, a summary
of related work on CIA that is based on dependency and static
analysis is shown. In Section III, a theoretical background that
is required to understand concepts of CEG, backward slicing and
Bayesian Networks is given. In Section IV, the CEG model and
its formal definition has been proposed. In Section V, the
experimental setup of our study is shown. In Section VI, the case
study and selected open source project for our study has been
described. In Section VII, the results of our study are given. In
Section VIII, threats of our study and results has been discussed.
Finally, Section IX, concludes the paper and mentions about the
future work on CEG.

II. RELATED WORK

Badri et al. [6] proposed a static approach based on
dependency analysis. By combining static program analysis and
call graphs, they have formed a directed graph model called
“control call graph” to support and predict change impact
analysis. Since that call graphs are at method-level granularity,
the proposed approach is at method-level granularity. The
control call graph is based on “if” (also include while)
conditions in the source codes and the method interactions
between them. Thereby, when a method is changed, a control
call graph allows to find the possible impacted methods through
reachable methods. This provides to exclude methods from the
estimated impact set that has no dependency relationship
between that change method.

Sun et al. [7] provided a static CIA approach, by focusing on
the change types. They have given a taxonomy of change types
that some of them were referred from [8]. To improve the
precision of their estimation on impacted sets, their approach
relies on three factors. The first one is the change types of a
modified entity that they have classified. Second factor is the
dependencies between the changed entity and other entities.
Third is finding the initial impact set. The initial impact set has

an important effect on the final impact. The more accurate
estimation on initial impact, the more precise final impact set
become. Their CIA technique has concentrated on the class and
call member level granularities.

Tonella [9] proposed an approach that uses both program
slicing and concept analysis. By combining the program
representation of program slicing called decomposition slice
concept analysis, a lattice called concept lattice of
decomposition slice has been generated. Using lattices has
allowed to provide more information about the relationships
between slices.

Bayesian Networks have already been used in CIA.
However, instead of using it on source code and its information,
it has been used in architectural design and history. For instance,
Tang et al. [10] proposed a CIA technique that uses Bayesian
Networks in architectural design. Based on the design decisions
and design elements, the Bayesian Network used to quantify
these design relationships and elements. An example of
Bayesian Network usage in change history was proposed by
Mirarab et al. [11] called that uses a Bayesian Dependency
History Model. They have used two sources of information that
are; change history from CVS (Concurrent Version System) and
dependency metrics which are extracted and calculated with
static analysis. As for dependency metrics, coupling information
and package relationship information have been used. This
information is then used in Bayesian Network for training, to
predict changes.

Ren et al. [12] proposed a CIA technique that is based on test
cases and call graphs. Their technique assumes that a test suit of
regression tests, which that have access to the original and
modified versions of the source code. First their technique
analyzes the changed source code in a method level granularity.
Then, for each test case a call graph is constructed. After the call
graphs are generated, their analysis determines a subset of the
test suit that is affected by the changes that are made. Using the
subset of test suit, an analysis is performed on each test case’s
call graph. The analysis determines a subset of affected parts of
source codes that are by the changes.

III. THEORETICAL BACKGROUND

A. Bayesian Networks

Bayesian Networks (BN) are sometimes known as Bayes

Nets or Bayesian Belief Networks. They are probabilistic

directed acyclic graphical models. To express any conditional

dependencies between variables (nodes) they use directed

acyclic graphs. Each node is encoded with probabilistic

information related from its parent nodes. If the node does not

have any parent node, then probabilistic information that is

directly related to the node is encoded. The nodes in the BN

have their own Node Probability Table (NPT) and these tables

are where the probabilistic information are stored. Each node’s

NPT size change by the number of parent nodes that it has. On

the other hand, BN is extensively used in many fields. However,

they are generally used for prediction or for reasoning. In this

study, we use BNs for predicting the change impact set.

B. Program Slicing

Program slicing is a technique for simplifying programs that
is performed on a set of program statements. The slicing process
basically deletes the statements of the program that have no
effect the values at a point of interest, which is also known as
slicing criterion. Program slicing is categorized as static
analysis-based and dynamic analysis-based program slicing.

In this paper, static analysis-based program slicing is used.

There are two fundamental static analysis-based program

slicing approaches. Backward slicing was proposed by Weiser

[13]. Backward slicing performs its analysis on control-flow

graphs (CFGs) and it is used to assist developers by helping to

locate the parts of the program, which contain a bug. The

second slicing technique is forward slicing and was proposed

by Horwitz et al. [14]. Rather than performing its slicing on a

CFG, they do it on system dependency graphs.

C. Call Graph

Call graphs are a directed graph representation that shows

the call relationships between procedures. It is defined as a set

of directed edges and each edge is a call to a target function. In

general, there are two types of call graphs; dynamic and static

call graphs. Dynamic call graph is constructed during an

execution of a program, while static call graph is constructed by

a program’s source code. The ideal call graph [15] is the union

of dynamic call graphs that is obtained from all possible

executions of the program. Therefore, we can say that every

dynamic call graph is a subset of the ideal call graph. On the

other hand. Static call graph is a superset of ideal call

graph.[16]. In this study, we have used a static call graph.

D. Change Impact Analysis EIS and AIS Relationships

 This study aims to find all the affected methods and achieve
a recall value 1.0, before half of the software development is
complete. Arnold and Bohner [17] have defined seven different
possibilities of Estimated Impact Set (EIS) and Actual Impact
Set (AIS) relationships. EIS is a set of affected methods/class
that is estimated by the CIA approach. AIS is a set of the actual
set of affected methods. # represents changes in a set.

1. Best:
 EIS# = AIS#,
 |AIS#| / |EIS#| = 1

2. Safe:
 |EIS#| > |AIS#|,
 AIS# EIS#,
 0 < |AIS#| / |EIS#| < 1

3. Safe (Not so good):
 |EIS#| >> |AIS#|,
 AIS# EIS#,
 0 < |AIS#| / |EIS#| < 1

4. Expected:
 |AIS#| > |EIS#|,
 EIS# AIS#,
 0 < |EIS#| / |AIS#| < 1

5. Not so Good:
 AIS#| > |EIS#|,
 EIS# AIS#,
 0 < |EIS#| / |AIS#| < 1

6. Not so Good:
 |AIS# ∩ EIS#| > 0,
 AIS# ≠ EIS#

7. Not so Good:

 |AIS# ∩ EIS#| = 0,

Based on the seven possibilities, the first, second and third

possibilities are considered as Best and Safe. Furthermore, they

can detect all the affected methods, while the other possibilities

cannot find all the affected methods.

IV. CHANGE EFFECT GRAPH

Change effect graph (CEG) is a model that is used in the BN,
which we use to detect to be affected methods in a version
change. To construct a CEG, first, changed code lines are
detected between two consecutive versions of software. The
change information is gathered at method granularity level. This
change information is combined with the call graph (CG) of the
methods involved in change to create a CEG, which will be
described in detail in Figure 1 and Table I. The created CEG
presents the layout of the Bayesian Network.

A CEG is defined as a directed edge-labeled graph as
𝐺(𝑁, 𝐸, 𝑤), where:

1. Each node 𝑛𝑖 ∈ 𝑁, where N is the set of methods of a
software.

2. For each node 𝑛𝑖 , 𝑛𝑘 ∈ 𝑁, if there is a directed edge
𝑒𝑗 ∈ 𝐸 exists representing < 𝑛𝑖𝑛𝑘 >, it corresponds to

the effect relationship from 𝑛𝑖 to 𝑛𝑘, where 𝑛𝑖 effects
𝑛𝑘.

3. 𝑤 ∶ 𝐸 → 𝑅 is a function mapping each edge 𝑒𝑗 ∈ 𝐸 to

a label 𝑅𝑙 ∈ 𝑅, 𝑤ℎ𝑒𝑟𝑒 𝑙 = {1, 2, 3, 4, 5, 6} and 𝑅 is the
set of rules, which is given in Table I. Set 𝑅 consists of
six rules 𝑅 = {𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6}. Each rule
contains information of the nodes represented by 𝑒𝑗

<𝑛𝑖, 𝑛𝑘 >, which are caller method and callee method,
respectively.

In shown Figure 1, where creation of a change effect graph
is shown, where a change effect graph is built on method change
information from difference of versions and caller-callee
information from the call graph of the latter version.

A. Rule Definifions for Change Effect Graph

As in Table I, for the construction of the CEG, we define six
rules. These rules, forms the direction of the edges of a CEG. In
the first column of Table I, the rules are given. The second
column represents caller method’s change status (C1). Likewise,
the third column represents callee method’s change status (C2).
Fourth column shows the change rate relationships between C1
and C2 methods. Furthermore, in the fourth column, where
S(C1) and S(C2) are functions that return the number of

statements that C1 and C2 has. In the last column, the edge of
effect direction is shown.

Fig 1. Creation of Change Effect Graph

The complete rule definitions are given below in Table I:

TABLE I. Rules for constructing change effect graph

Rule
Caller (C1)

Status
Callee (C2)

Status
Change Rate
Relationships

Effect
Direction

R1 Unchanged Unchanged C1 = C2 C1 → C2

R2 Unchanged Changed C1 < C2 C1 C2

R3 Changed Unchanged C1 > C2 C1 → C2

R4 Changed Changed C1 > C2 C1 → C2

R5 Changed Changed
(C1 = C2)

S(C1) ≥ S(C2)
S(C1) < S(C2)

C1 → C2

C1 C2

R6 Changed Changed C1 < C2 C1 C2

• Rule R1: The caller method C1 and callee method C2 are
unchanged between two versions. Since there are no
changes in both methods, then the call graph relationship
(edge direction) is preserved as given in Table I in R1.

• Rule R2: If callee method C2 is changed and caller method
C1 is unchanged, we assume that the changes that are made
in callee method C2 will affect the caller method C1.
Therefore, the edge <caller method, callee method> in call
graph, has been transformed to <callee method, caller
method> in change effect graph.

• Rule R3: If the caller method C1 is changed and callee
method C2 is unchanged, we assume that the changes that
are made in caller method C1 will affect the callee method
C2. Therefore, the edge <caller method, callee method> in
call graph, has been kept same in change effect graph.

 Before explaining rules R4, R5 and R6, we introduce CEG
Precondition that is used in defining for them. In this
precondition, three cases are observed, where both caller C1 and
callee C2 methods are changed at the same time.

 CEG Precondition: If both caller method and callee method
are changed, we assume that the changes that are made in callee
method and caller method could both affect each other.
However, if we define two edges in a change effect graph such
as <caller method, callee method> and <callee method, caller
method> we will create a cyclic graph, which does not satisfy
the definition of a Bayesian network. Therefore, we must
assume that one of the methods has a higher effect than the other
method. We select the method with the highest change
percentage to have higher effect on the other method. This
precondition applies to rules Rule R4, Rule R5 and Rule R6.

• Rule R4: If Precondition is satisfied and if caller method C1
has a higher change percentage than callee method’s C2
change percentage, we assume that the changes that are
made in caller method C1 will affect the callee method C2
more than the changes in callee method C2 affecting caller
method C1. Therefore, the edge <caller method, callee
method> in call graph, has been kept same in change effect
graph.

• Rule R5: If Precondition is satisfied and if callee method C2
has the same bytecode-wise change percentage with caller
method’s C1 change percentage, we assume that the
changes that are made in caller method and callee method
could affect each other equally. However, if the number of
statements in C1 (S(C1)) is greater or equal to C2 (S(C2)),
then the edge <caller method, callee method> in call graph,
has been kept same in change effect graph. If the number of
statements in C2 (S(C2)) is more than C1’s number of
statements (S(C1)), then the edge <caller method, callee
method> in call graph is transformed into <callee method,
caller method> in change effect graph. The reason is, if a
method has more statements, this means that more
statements have been changed. For instance, let’s assume
that we have two methods, C1 and C2 methods. In addition,
assume that they have the same amount of change rate 0.25.
However, the statements numbers are different. Let, C1
have 4 statements in total and only 1 statement has been
changed and let C2 have 20 statements at total and 5 of its
statements have been changed. Both of their changed rates
are same, however, the total number of changed statements
can be different. Therefore, when there is an equality
between change rates, we change the effect direction based
on the amount of changed statements.

• Rule R6: If Precondition is satisfied and if callee method C2
has a higher change percentage than caller method’s C1
change percentage, we assume that the changes that are
made in callee method will affect the callee method more
than the changes in callee method affecting caller method.
Therefore, the edge <caller method, callee method> in call
graph, has been transformed to <callee method, caller
method> in change effect graph.

B. Converting Directed Cyclic CEG to Directed Acyclic CEG

 Applying the rules in Section IV-A and Table I might end up
with creating directed cyclic graphs. Therefore, CEGs can have
cycles and it is a graphical representation that shows the effect
relationships between method. Meanwhile, BNs only uses the
effect dependencies of CEG by using its graphical layout.

However, according to BNs properties, a BN must be an acyclic
graph. Thereby, if a CEG contains cycles, for a BN to use a
CEG’s layout the cycles must be removed from the CEG.

 We recall that CEGs are used in BNs to obtain change impact
analysis results and one of the fundamentals of BN is that they
are directed acyclic graphs. Therefore, after applying rules, the
initial CEG is analyzed if it contains any cycles. If any cycle
exists in the initial CEG, Feedback Arc Set Algorithm [18] is
used to remove cycles from initial CEG.

 The main objective of the Feedback Arc Set Algorithm is to
find a set of arcs (edges) that causes feedback, i.e. edges that
generates cycles in the graph. These edges are found by first
deciding an initial node on the graph, then the graph is traversed
starting from that initial node. While traversing the graph, the
first node that is revisited is where the edge creates a cycle. Then
this edge is added into a set that is called Feedback Arc Set. After
the graph is completely traversed, i.e. all nodes visited, all the
edges in the Feedback Arc Set are removed from the graph to
obtain final CEG. If there are no cycles in the initial CEG, the
Feedback Arc Set Algorithm is not used and initial CEG
becomes final CEG automatically.

C. Encoding Bayesian Network Nodes with Backward Slicing

Probabilistic Information

With final CEG, the layout of the acyclic CEG is used for

the construction of the BN by encoding the nodes, i.e. by filling

in the Node Probabilistic Table (NPT) for each node, of the final

CEG. NPTs require probabilistic values. Our proposal and one

of the contribution of the paper is to obtain those probabilistic

values through backward slicing and change rate.
The CEG is formed by call graphs, for this reason the

backward slicing should use data flow information between
method to method. The data could flow in between methods
from both sides; 1) data flow from caller method to callee
method, 2) data flow from callee method to caller method.
Details of the two direction of data flows are given below:

1. Type 1: Data Flow from Caller Method to Callee

Method: This data flow assumes that the callee method

is affected by the caller method. For a caller method to

affect callee method could happen through passed

parameter. Therefore, for this type of relationship in the

CEG, the backward slicing uses the passed parameters

as variables for the slicing criterion and investigate

them. If, callee method does not have any parameter,

then we assume that caller method does not affect the

callee method.

2. Type 2: Data Flow from Callee Method to Caller

Method: This data flow assumes that the caller method

is affected by the callee method. For a callee method to

affect a caller method could happen through returned

value from the callee method. Thereby, for this type of

relationship in CEG, the backward slicing uses the

returned variable for its slicing criterion. If the callee

method does not return anything (void method), then in

CFG there will be no newly created variable and no

transition to any other statements in the CFG.

On the other hand, global variables are another option that

caller and callee method could affect each other. However,

backward slicing uses CFGs, which has a modular approach on

each method. Therefore, it is very difficult to track global

variables in CFGs and hard to differentiate which variables are

global variables and which are not.

Before explaining how the probabilistic values are

calculated and assigned to their respective NPTs, we require

two definitions. Let 𝑆𝑋
 be a set of statements of a CFG (control-

flow graph) of method 𝑋. Then let, 𝑆𝑋
𝑌 be a subset of 𝑆𝑋

 , that

represents the affected statements from backward slicing,

where 𝑌 is the affecting method and 𝑋 is the affected method.

There are two types of slicing criteria; slicing by callee

method’s parameters (Type 1) and slicing by returned callee

methods (Type 2). We define two different sets of statements

based on slicing criteria. For Type 1, let 𝑆𝑃𝑋
𝑌 𝑆𝑋

 be a set of

sliced statements based on method’s parameters. For Type 2, let

𝑆𝑅𝑋
𝑌 𝑆𝑋

 be a set of sliced statements based on callee method’s

returning value.

To calculate the probability of Type 1, by using backward

slicing, we divide the statements of callee method that are

affected by its parameters to the total number of statements of

callee method’s CFG. The equation for Type 1 is given in

Equation 1.

|𝑆𝑃𝑋

𝑌|

|𝑆𝑃𝑋
 |

 ()

Similar to Type 1, we use backward slicing to calculate the

probability of Type 2. However, we divide the statements of

caller method that are affected by callee method’s return value

to the total number of statements of caller method’s CFG.

Therefore, the rather than using set 𝑆𝑃 we use set 𝑆𝑅. The

equation for Type 2 is given in Equation 2.

|𝑆𝑅𝑋
𝑌|

|𝑆𝑅𝑋
 |

 ()

D. Application of Proposed Method

In this section, we discuss how we apply the rule definitions

that form the CEG and how the backward slice information is

represented with probabilistic values on a running example.

Finally, we show how the probabilistic values are encoded into

the nodes of the BN.

To determine which edge directions should be changed, by

using the change information and call relationships we find the

rules that should be applied on the edges. In Figure 2, on the

left-hand side, we have a call graph of a program. Each node

represents a unique method and each edge direction describes a

<from, to> relationship, which means that from method calls to

method. The nodes that are filled are the methods that have been

changed. Therefore, the methods A, C, D, E and H in Figure 2

are changed. Let’s assume that the change percentage in terms

of the amount of changed lines of bytecode relationship

between methods are given below:

• Assumption 1: Change % of A > Change % of C

• Assumption 2: Change % of C = Change % of E

• Assumption 3: Change % of D > Change % of E

• Assumption 4: Change % of E < Change % of H

For each edge by using call graph information and change

percentage relationships between methods, the rules are applied

below:

• Due to Assumption 1 and rule R4 in Table I, the edge

<A,C> in call graph has been kept same with in CEG.

• The call graph relationship between method B and C

corresponds to the rule R2 in Table, where method B is

unchanged and method C is changed. Therefore, the edge

<B,C> in call graph has been has been transformed to

<C,B> in CEG and shown with a dotted edge.

• Due to Assumption 2 and rule R5 in Table I, the edge

<C,E> in call graph has been kept same with in CEG.

• Due to Assumption 3 and rule R4 in Table I, the edge

<D,E> in call graph has been kept same with in CEG.

• The call graph relationship between method E and G

corresponds to the rule R3 in Table I, where method E is

changed, and method G is unchanged. Therefore, the edge

<E,G> in call graph has been kept same with in CEG.

• The call graph relationship between method F and G

corresponds to the rule R1 in Table I, where methods F and

G are unchanged. Therefore, the edge <F,G> in call graph

has been kept same with in CEG.

• The call graph relationship between method E and H

corresponds to the rule R6 in Table I, where methods E and

G are changed. Therefore, the edge <E,H> in call graph

has been has been transformed to <H,E> in CEG and

shown with a dotted edge.

Once final CEG is ready, the CEG is used for the

construction of the BN. It is important to recall that CEGs and

BNs are not same. CEGs are directed graphs that can have

cycles and a model that represents the affecting relationships

between methods. BNs are directed acyclic graphs and their

nodes contain probabilistic information. A BN only uses the

affecting relationships between methods (graph layout) from

final CEG, which does not contain cycles.

Fig 2. An example of call graph and change effect graph

When the graph layout of final CEG is used for the construction

of BN, the next step is to encode the BN nodes, in other words,

encoding the NPTs with probabilistic information. For each

node in final CEG, Type1 and Type2 probability calculations

with respect to relationships in Figure 2 are shown in Tables II-

IX:

TABLE II. NPT of Method A

 A
 True False

 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐴) 1 − 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐴)

TABLE III. NPT of Method B

C B
 True False

T
|𝑆𝑅𝐵

𝐶|

|𝑆𝐵
 |

 1 −
|𝑆𝑅𝐵

𝐶|

|𝑆𝐵
 |

F 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐵) 1 − 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐵)

TABLE IV. NPT of Method C

A C
 True False

T
|𝑆𝑃𝐶

𝐴|

|𝑆𝐶
 |

 1 −
|𝑆𝑃𝐶

𝐴|

|𝑆𝐶
 |

F 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐶) 1 − 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐶)

TABLE V. NPT of Method D

 D
 True False

 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐷) 1 − 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐷)

TABLE VI. NPT of Method E

C D H E

 True False

T T T
|𝑆𝑃𝐸

𝐴 ∪ 𝑆𝑃𝐸
𝐷 ∪ 𝑆𝑅𝐸

𝐻|

|𝑆𝐸|
 1 −

|𝑆𝑃𝐸
𝐴 ∪ 𝑆𝑃𝐸

𝐷 ∪ 𝑆𝑅𝐸
𝐻|

|𝑆𝐸|

T T F
|𝑆𝑃𝐸

𝐴 ∪ 𝑆𝑃𝐸
𝐷|

|𝑆𝐸|
 1 −

|𝑆𝑃𝐸
𝐴 ∪ 𝑆𝑃𝐸

𝐷|

|𝑆𝐸|

T F T
|𝑆𝑃𝐸

𝐴 ∪ 𝑆𝑅𝐸
𝐻|

|𝑆𝐸|
 1 −

|𝑆𝑃𝐸
𝐴 ∪ 𝑆𝑅𝐸

𝐻|

|𝑆𝐸|

T F F
|𝑆𝑃𝐸

𝐴|

|𝑆𝐸|
 1 −

|𝑆𝑃𝐸
𝐴|

|𝑆𝐸|

F T T
|𝑆𝑃𝐸

𝐷 ∪ 𝑆𝑅𝐸
𝐻|

|𝑆𝐸|
 1 −

|𝑆𝑃𝐸
𝐷 ∪ 𝑆𝑅𝐸

𝐻|

|𝑆𝐸|

F T F
|𝑆𝑃𝐸

𝐷|

|𝑆𝐸|
 1 −

|𝑆𝑃𝐸
𝐷|

|𝑆𝐸|

F F T
|𝑆𝑅𝐸

𝐻|

|𝑆𝐸|
 1 −

|𝑆𝑅𝐸
𝐻|

|𝑆𝐸|

F F F 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐸) 1 − 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐸)

TABLE VII. NPT of Method F

 F

 True False

 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐹) 1 − 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐹)

TABLE VIII. NPT of Method G

E F G

 True False

T T
|𝑆𝑃𝐺

𝐸 ∪ 𝑆𝑃𝐺
𝐹|

|𝑆𝐺|
 1 −

|𝑆𝑃𝐺
𝐸 ∪ 𝑆𝑃𝐺

𝐹|

|𝑆𝐺|

T F
|𝑆𝑃𝐺

𝐸|

|𝑆𝐺|
 1 −

|𝑆𝑃𝐺
𝐸|

|𝑆𝐺|

F T
|𝑆𝑃𝐺

𝐹|

|𝑆𝐺|
 1 −

|𝑆𝑃𝐺
𝐹|

|𝑆𝐺|

F F 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐺) 1 − 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐺)

TABLE IX. NPT of Method H

 H

 True False

 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐻) 1 − 𝐶ℎ𝑎𝑛𝑔𝑒𝑅𝑎𝑡𝑒(𝐻)

V. EXPERIMENTAL SETUP

The experimental setup follows four steps of the proposed

method.

1. Call graph extraction

2. Method change information extraction

3. Backward slicing implementation

4. Bayesian Network integration

All these steps are built using Java language. In addition, the

open source project that is used for our case study is written in

Java language as well.

A. Call Graph Extraction

 To extract the call graph of a Java source project, we have
used java-callgraph1, which is developed by Georgios Gousios
and available as open source. Java-callgraph, provides both
static and dynamic call graphs. In this study, we have only used
the static call graph.

Normally, java-callgraph only provides an output of the call

graph. Since that we need to process on the call graph, we need

to store the call graph in a data structure. Therefore, we have

1 java-callgraph - https://github.com/gousiosg/java-callgraph
2 reJ - http://rejava.sourceforge.net/

modified java-callgraph so that we can perform our operations

(change edge directions, remove edges) to convert the call

graph into a CEG.

B. Method Change Information Extraction

 It is important that we find the changed components between
two different versions of a project. Thereby, we can have our
initial point where are the affected parts of the project. Then,
from this point of view we locate the other parts of the project
that are affected by these changes. These predictions will then
construct our EIS.

To find the differences between two versions we used an

open source diff-tool called reJ2. reJ, is a graphical tool that

shows the changed lines (added and deleted) on its Java

bytecode and does not provide any numerical change

information. To automatize our system and to apply our rules

that were described in section IV, we have made three major

modifications on reJ. To view changes between two versions,

reJ required multiple user interactions. Our first modification

was to eliminate all these user interactions and obtain all the

changes at once. This modification enabled us to construct an

automatized system and save time consumption. Our second

modification was, converting reJ’s visual change information

into numerical information that represents the change rate. The

change rate is calculated by dividing the total number of

changed bytecode lines to total bytecode line. Third is changing

the granularity level of change information. reJ provides a

change information at class-granularity level. We have

modified the granularity level to method-granularity. This

modification is necessary because of the aim of this study

targets impact analysis on methods.

C. Backward Slicing Implementation

 There are few open source tools for Backward slicing that
supports Java programming language. One of the popular ones
are Indus by Ranganath et al. [19] and Kaveri by Jayaraman et
al [20]. These tools are available as open source. However,
Kaveri and Indus support Java 4 and the current open source
project that we have used in our case study support Java 8 and
9. Therefore, we have implemented our own Backward Slicing.

In Section III we have that Backward Slicing works on and

requires CFGs. Kaveri and Indus have used Soot [20],[21] to

generate CFGs. In this study, we have used Soot as well.

D. Bayesian Network Integration

 To execute the BN, the academic version of GeNIe [23],[24]
has been used. GeNIe is a graphical tool of SMILE [24] engine.
GeNIe supports multiple commercial and non-commercial BN
tools’ file formats that include information about the BN. This
information includes; node names, directed edges between
nodes, node probability table values.

 We have implemented a feature that automatically converts
the BN we have constructed through our analysis to “.net” file
format, which is a BN file format of Hugin3. Among other file
formats, we have selected “.net” because of simple structure of

3 Hugin - https://www.hugin.com/

its file format. The file structure is very similar to XML format.
Thereby, this allows us to easily implement the BN file and easy
to parse these files for later usage.

While analyzing the open source projects, due to their size

and large amount of methods, the BNs could be very large and

complex. These large and complex BNs are unfortunately an

obstacle in terms of memory usage efficiency. However, in the

BN there could be disconnected subgraphs. Therefore, for

memory efficiency, every disconnected sub-graph is treated

separately. First, the disconnected subgraphs are detected.

Then, each subgraph is processed. After each subgraph is

constructed and its “.net” file is generated, then that subgraph

is removed from the memory, because the BN is already stored

in a file.

VI. CASE STUDY

Previous studies on CIA have selected their open source
project from Sourceforge4 and used CVS5 for obtaining change
history of these open source projects. Unfortunately, CVS is no
longer maintained. Therefore, in this study we have used more
up to date and popular technologies that are preferred by
developers. We select our open source Java project from Github6
among trending Java projects. It is also possible to extract each
version’s commit information (change history) and download
each version of commit.

We have selected Java JWT7, which is that provides a JSON
Web Token for Java and Android. It is a project that has released
10 versions and has 292 commits. We have tried to select the
latest version of Java JWT with many commits. Thereby, we
have performed our case studies for versions v0.6.0 and v0.7.0.
In between versions v0.6.0 and v0.7.0 there are 80 commits.
Among 80 commits only 32 of them contain Java source code
changes. The size for the open source project Java JWT is given
in Table X.

TABLE X. Java JWT Project Information

 jjwt-0.6.0 jjwt-0.7.0

LOC 8999 9445

of Classes 86 91

of Methods 505 528

of Statements 2797 2956

 As mentioned before, out of 80 commits only 32 of them had
Java source code changes. Therefore, in this study 32 of these
commits have been downloaded and analyzed separately. Each
of the commit is analyzed in chronological order and each of
their precision, recall and f-measure values are calculated. It is
expected that, this investigation will provide us a brief
explanation about, when is it effective perform CIA after how
much of the development has been completed.

4 Sourceforge - https://sourceforge.net/
5 CVS - http://www.nongnu.org/cvs/

VII. RESULTS

To calculate the recall, precision and f-measure of our approach,
the AIS is first required. The AIS is a set of changed methods
between the current version (jjwt-0.6.0) and next version (jjwt-
0.7.0). The commits are the changes that are made between
current version and next version. Therefore, AIS is the ground
truth of our study. In between versions jjwt-0.6.0 and jjwt-0.7.0,
49 methods have been changed and newly implemented
methods. Depending on the commit, out of the 49 changed
methods newly (not implemented yet) methods are removed.
The recall, precision and f-measure calculations are calculated
by the formulas given below in Equations (3), (4) and (5). In
those equations R stands for recall, P stands for precision, and
F stands for f-measure.

𝑅 =
|𝐴𝐼𝑆 ∩ 𝐸𝐼𝑆|

|𝐴𝐼𝑆|
 (3)

𝑃 =
|𝐴𝐼𝑆 ∩ 𝐸𝐼𝑆|

|𝐸𝐼𝑆|
 (4)

𝐹 = 2 ×
(P ×𝑅)

𝑃+𝑅
 (5)

The EIS results contain methods with probabilistic values.
Methods that have a very low probability value are the methods
that are not affected or least affected. However, the higher
probability the method has, the higher it is affected by changes.
Therefore, to observe the changes in precision, there are three
types of investigations performed. The first is filtering the EIS
results by only accepting the methods that have 0.02 higher
probabilistic values. The second if filtering the EIS results by
only accepting methods that has higher probability value than
0.01. The last is no performing any filtering on the EIS results.

 Another investigation that has been performed is
manipulating the AIS. Normally the AIS, is the set of changed
methods from a version to its next version. However, the
drawback of using the set of total changed methods also includes
methods that are newly implemented methods. Since it is
impossible to predict unimplemented and not defined methods,
this causes a serious decrease in recall and precision results.
Thereby, to solve this issue, we have removed the methods that
are not yet implemented in the currently analyzed commit.
Otherwise, without removing the unimplemented methods we
would be trying to predict methods that does not exists in the
source code and the precision recall values would be misleading.

 First, the methods in AIS that are not implemented yet in the
current commit under analysis are eliminated. In Figure 3, there
are no filtering applied on method probabilities in EIS.
Therefore, the recall value on each commit resulted with 1.0.
This shows that, every affected method has been detected.
However, the maximum precision value that we could get is
0.11, which is very low. This means that, developers have to

6 Gitub - https://github.com/
7 Java JWT - https://github.com/jwtk/jjwt

spend a lot of effort on finding and maintaining the real impacted
methods in the software.

Fig 3. No filtering applied on method probabilities and all methods in EIS are

selected.

On the other hand, in Figure 4 when the methods with
probability that are lower than 0.01 are removed from EIS, a
slightly change on the precision and noticeable change on recall
values has been observed. Comparing to Figure 3, the max
precision value that has been observed is 0.06, while in Figure 4
the max precision value has increase to 0.19. However, the
important jump that we have captured is, at the 12th commit,
when 37.5% of the software implementation is complete. Before
the project has completed half of its implementation, our
approach is able to find all of the affected method. In terms
precision, at the 24th commit, when 75% of the software
implementation is complete, we have obtained the highes
precision value 0.19. Since that all of the affected methods are
detected, we have both satisfied the 2nd and 3rd possibilities that
Arnold and Bohner [17] have defined, which are “Safe”.

Fig 4. Probabilities under 0.01 are removed from EIS.

In Figure 5, a more selective filtering has been applied.
Compared to Figures 3 and 4 a higher precision has been
obtained, which is 0.48. However, by using a more selective
filtering caused in missing some of the affected methods that
has decreased the recall value. While we were able to detect all
the affected methods by only accepting the methods that have
higher probability than 0.01. Using a filter that accepts the
method probabilities that are greater and equal to 0.02 caused
by only capturing 88% of the affected methods. This situation
corresponds to Arnold and Bohner’s [17] 5th possibility of AIS
and EIS relationship. The 5th possibility is where all the affected
methods are not estimated, and the estimated affected methods
have false positives. This possibility is considered as “Not so
good”. It is observed that removing the methods with
probability that are lower than 0.01 from EIS is the best
parameter choice.

Fig 5. Probabilities under 0.02 are removed from EIS.

VIII. THREATS TO VALIDTY

In this section, we discuss the limitations of our overall
experimental design and setting.

We have conducted our research and evaluation on single

open source Java project. In addition, the size of the open source

project is not large. Therefore, we cannot claim generality for

our results. However, the open source project that we have

selected is a real project that is frequently used and available on

current repository hosting service. Furthermore, the subject

project is an up-to-date project with ten versions released.

Nevertheless, additional studies with other and larger open

source project is required to answer such questions of external

validity.

Other limitations involve internal validity. In the basis of

our study we used call graphs and change amount of methods

to construct CEG, which is built upon six rules. Then, to satisfy

the properties of BNs, the edges that cause cycles in the CEG

are removed. Recall that edges show dependencies between

method and when edges are removed from CEG, we might be

losing a valuable dependency information. To reduce the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Commit Number

Precision Recall F-Measure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Commit Number

Precision Recall F-Measure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Commit Number

Precision Recall F-Measure

amount of loss in dependency, we have defined the six rules.

However, this might have lead us to low precision results.

In addition, using backward slicing has its own limitations.

Using backward slicing is a modular, it performs slicing by on

methods’ control-flow graphs independently. Thereby, we were

only able to focus on method parameters and method returns.

However, methods could be affected by global variables as well

and our experimental design does not perform its slicing over

global variables. This cloud lead to imprecise change impact

analysis results.

Briefly, our results support that, using backward slicing and

CEGs in BN could produce benefits in change impact analysis,

such that all affected methods could be found before half of the

implementation is complete. Therefore, the results we have

obtained motivates us to perform further studies, followed by a

detailed and carefully controlled experimentation, to investigate

whether results will generalize.

IX. CONCLUSION AND FUTURE WORK

 In this study, first a directed graphical model called Change
Effect Graph has been proposed. This model is created by using
call graph and change information. In the proposed approach,
the Change Effect Graph is used in a Bayesian Network and the
nodes are encoded with probabilistic values that are obtained
from program slicing and change information. The approach is
applied to an open source project called Java JWT, which is
obtained from Github. Java JWT has 32 commits between
version 0.6.0 and 0.7.0 that included Java source code changes.
Each commit is investigated separately to observe at which
commit we can detect all to be affected methods with respect to
already started changes. The proposed method detects all to be
affected methods in 12th commit. Our experimental results have
shown that, by using CEG, it is possible to detect all to be
affected methods before half of the implementation is complete.

 To increase precision results, change types could be
investigated deeply. Each different type of change can have
different effects on different methods and these changes could
be weighted differently. In addition, CEG uses call dependency
and data dependency. The data dependency is consisted of
parameter passing and method return values. Other types of
dependencies could be investigated further. In addition, we are
aware to satisfy a BN, removing cycles is one of the drawbacks
of our study. To create an acyclic graph, we remove edges,
which could remove a valuable dependency information as well.
Therefore, we have constructed the six rules to minimize the loss
of dependency information. However, in further studies we plan
to use Markov chains which allow us to include cycles in graph.

REFERENCES

[1] A. Kumar, “Development at the Speed and Scale of Google,” in
International Software Development Conference (QCon), 2010.

[2] F. Norman, N. F. Schneidewind, and S. Member, “The state of software
maintenance The State of Software Maintenance,” no. 3, pp. 303–310,
1987.

[3] G. Canfora and L. Cerulo, “Impact Analysis by Mining Software and

Change Request Repositories,” Proc. IEEE Int. Symp. Softw. Metrics, no.
Metrics, pp. 29–38, 2005.

[4] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predicting
source code changes by mining change history,” IEEE Trans. Softw. Eng.,
vol. 30, no. 9, pp. 574–586, 2004.

[5] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based change
impact analysis techniques,” Softw. Testing, Verif. Reliab., vol. 23, no. 8,
pp. 613–646, Dec. 2013.

[6] L. Badri, M. Badri, and D. St-Yves, “Supporting predictive change impact
analysis: a control call graph based technique,” in 12th Asia-Pacific
Software Engineering Conference (APSEC’05), 2005, p. 9 pp.

[7] X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang, “Change Impact Analysis
Based on a Taxonomy of Change Types,” in 2010 IEEE 34th Annual
Computer Software and Applications Conference, 2010, pp. 373–382.

[8] B. Fluri and H. C. Gall, “Classifying Change Types for Qualifying
Change Couplings,” in 14th IEEE International Conference on Program
Comprehension (ICPC’06), 2006, vol. 2006, pp. 35–45.

[9] P. Tonella, “Using a concept lattice of decomposition slices for program
understanding and impact analysis,” IEEE Trans. Softw. Eng., vol. 29, no.
6, pp. 495–509, 2003.

[10] A. Tang, A. Nicholson, Y. Jin, and J. Han, “Using Bayesian belief
networks for change impact analysis in architecture design,” J. Syst.
Softw., vol. 80, no. 1, pp. 127–148, 2007.

[11] S. Mirarab, A. Hassouna, and L. Tahvildari, “Using Bayesian Belief
Networks to Predict Change Propagation in Software Systems,” in 15th
IEEE International Conference on Program Comprehension (ICPC ’07),
2007, pp. 177–188.

[12] Xiaoxia Ren, B. G. Ryder, M. Stoerzer, and F. Tip, “Chianti: a change
impact analysis tool for Java programs,” in Proceedings. 27th
International Conference on Software Engineering, 2005. ICSE 2005.,
2005, pp. 664–665.

[13] M. Weiser, “Program Slicing,” IEEE Trans. Softw. Eng., vol. SE-10, no.
4, pp. 352–357, Jul. 1984.

[14] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM SIGPLAN Not., vol. 39, no. 4, p. 229, Apr.
2004.

[15] O. Lhoták, “Comparing call graphs,” in Proceedings of the 7th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software tools
and engineering - PASTE ’07, 2007, pp. 37–42.

[16] B. G. Ryder, “Constructing the Call Graph of a Program,” IEEE Trans.
Softw. Eng., vol. SE-5, no. 3, pp. 216–226, May 1979.

[17] R. S. Arnold and S. A. Bohner, “Impact Analysis - Towards a Framework
for Comparison,” Proc. Conf. Softw. Maint., pp. 292–301, 1993.

[18] V. Ramachandran, “Finding a minimum feedback arc set in reducible
flow graphs,” J. Algorithms, vol. 9, no. 3, pp. 299–313, 1988.

[19] V. P. Ranganath and J. Hatcliff, “Slicing concurrent Java programs using
Indus and Kaveri,” Int. J. Softw. Tools Technol. Transf., vol. 9, no. 5–6,
pp. 489–504, Oct. 2007.

[20] G. Jayaraman, V. P. Ranganath, and J. Hatcliff, “Kaveri: Delivering the
Indus Java Program Slicer to Eclipse,” in Fundamental Approaches to
Software Engineering, vol. 3442, 2005, pp. 269–272.

[21] P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and C. Verbrugge, “A
framework for optimizing java using attributes,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2001, vol. 2027, pp.
334–354.

[22] R. Vallée-Rai, P. Co, É. M. Gagnon, L. J. Hendren, P. Lam, and V.
Sundaresan, “Soot: A Java Bytecode Optimization Framework,” Proc.
2010 Cent. Adv. Stud. Conf., pp. 214–224, 2010.

[23] “GeNIe.” [Online]. Available: https://www.bayesfusion.com/genie-
modeler.

[24] M. J. Druzdzel, “SMILE : Structural Modeling, Inference, and Learning
Engine and GeNIe: A Development Environment for Graphical Decision-
Theoretic Models,” Proc. Sixt. Natl. Conf. Artif. Intell., no. May, pp. 342–
343, 1999.

