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Abstract—An automation architecture for Bayesian Network 

based test case prioritization is designed for software written in 

Java programming language following the approach proposed by 

Mirarab and Tahvildari [2]. The architecture is implemented as 

an integration of a series of tools and called Bayesian Network 

based test case prioritization and execution platform. The 

platform is triggered by a change in the source code, then it 

collects necessary information to be supplied to Bayesian 

Network and uses Bayesian Network evaluation results to run 

high priority unit tests. 

Keywords—testing; test prioritization; Bayesian Networks; Unit 

Testing 

I. INTRODUCTION 

 Ouriques stated that testing approximately consumes 50% 
of the total projects budget [1]. Therefore, while performing 
tests, it is critical to decide which test cases should be 
performed in which order to maximize effectiveness of test 
process. State of the art in software development expects, with 
each commit request, unit tests should be performed 
automatically and if any fault is found, the developer should fix 
it before committing. While fixing the source code, 
modifications made may have some affect on other parts of the 
code. Intuitively, we can say that if modified part of the code 
has successfully passed from the unit tests then next concern 
will be to re-run the unit tests of the possibly affected part of 
the code. If an automated solution tells the tester in which order 
the unit tests should be re-run, this will save time and effort. 

In this work, a Bayesian Network (BN) based test case 
prioritization approach proposed by Mirarab and Tahvildari [2] 
has been automated for Java programs and their unit tests. 
Additionally, effects of parameter selection (i.e. α, 𝛽, and δ) on 
test case prioritization has been observed and reported on a 
small case study with 4 classes and 204 lines of code. Table I 
shows our contributions to the proposed method in [2] in 
addition to making it fully automated including re-runing unit 
tests above the selected threshold. 

The paper is organized as follows. Section II gives related 
work. BN based test case prioritization approach proposed by 
Mirarab and Tahvildari [2] is explained in Section III while 
comparing their tool usage with ours. Section IV presents our 
proposed automation architecture for BN based test case 
prioritization. Section V describes the case study and reports 

our observations on the effects of parameter selection. Section 
VI concludes the paper with future work. 

TABLE I. Contributions 

 

  

Proposed work 
[2] 

Our Investigations 
and Contributions 
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Collecting Software Metrics 
(CBO, Fan-Out) 

ckjm 
ckjm, ObjectAid 

UML 

Change Information Sandmark reJ 

Coverage Information Emma EclEmma 

Constructing Bayesian Network  Smile Library OpenMarkov 

Unit Testing - (none) Junit 

M
et

h
o
d

o
lo

g
y
 

Framework Implemented Yes[2][3] Yes 

Automatized Tool Implemented No Yes 

Observing Types of Source 

Code Changes Effect on BN 
Test Case Priority Results 

No Yes 

Observing the effectness of α, β 

and δ values on Test Case 

Priority Results 

No Yes 

End-to-end automation No Yes 

 

II. RELATED WORK 

Mirarab et al. [2] proposed an approach to prioritize test 

cases in aspect of regression testing to enhance the rate of fault 

detection. They have proposed a unified model based on 

probability that uses Bayesian Networks (BN). Their proposed 

model utilizes data of source code changes, software fault 

proneness and test coverage. The approach has been compared 

with nine different prioritization approaches by using APFD 

(Average Percentage Faults Detected) their metric results. 

Observations have shown that, BN has performed better 

results, when the software system contains more faults. 

Wang et al. [4] claims that BN based Test Case 

Prioritization technique have focused on assessing the fault 

detection capability of each test case can utilize source code 

change information, software quality metrics and test coverage 

data. However, they claim that these techniques still has an 

absence that overlooks the similarities between test cases. To 



mitigate this problem, they proposed a hybrid regression test 

case prioritization technique to achieve better prioritization by 

incorporating code coverage based clustering approach with 

BN test case prioritization to reduce the similar test cases 

having common code coverage. To find the similar test cases 

that have the common code coverages, code coverage based 

clustering approach has been used.  

Xing et al. [5] have revealed a problem that most of 

current regression test case prioritization researches neglect to 

use internal structure information of software, although it is a 

significant factor influencing the prioritization of test cases. 

They have proposed an alternate regression test prioritization 

approach by considering the internal structure information and 

fault propagation behavior of modifications with respect to the 

modified versions of service-oriented workflow applications. 

Their approach schedules test cases based on dependency 

analysis of internal activities in service- oriented workflow 

applications.  

Konsaard and Ramingwong [6] have used Genetic 

Algorithms (GA) to select and order test cases to provide a 

total coverage based on regression testing. Coverage is 

measured through the path that a test case passes and to obtain 

path information, a graph structure is needed. Therefore, 

Konsaard and Ramingwong [6] has used static analysis to get 

a CFG (Control Flow Graph) of the code. From the CFG a 

decision-to-decision graph created, thereby a test case’s all 

possible paths could be easily generated. After a huge amount 

of test cases and paths are received, by using GA they 

optimize their test cases to create a total coverage. They have 

used and APCC (Average Percentage Code Coverage) metric 

to compare 5 other prioritization approaches. While the other 

5 prioritization approaches APCC value change between 

94.50% - 99.83% with 0.020 - 0.050 seconds of execution 

time, their approach has shown 100% APCC and 0.011 

seconds of execution time. 

Hao et al. [7] proposed an additional coverage-based 

technique, that uses a greedy strategy. They have investigated 

how much difference there are between the order produced by 

the additional technique and the optimal order in terms of 

coverage, they performed a their study on various empirical 

properties of optimal coverage-based test-case prioritization. 

To achieve the optimal order in acceptable time for their 

experimented programs, they formulated an optimal coverage-

based test-case prioritization with integer linear programming 

(ILP) problem. Then they performed an empirical study 

comparing the optimal approach with the simple additional 

coverage-based approach. From this empirical study, they 

have observed that the optimal approach can only relatively 

outperform the additional coverage-based approach with no 

statistically significant difference in terms of coverage, and the 

latter significantly outperforms the former in terms of either 

fault detection or execution time. As the optimal approach 

schedules the execution order of test cases based on their 

structural coverage rather than detected faults, in addition they 

implemented the ideal optimal test-case prioritization 

approach, which schedules the execution order of test cases 

based on their detected faults. They took this ideal approach as 

the upper bound of test-case prioritization and conducted with 

another empirical study comparing the optimal approach and 

the simple additional approach with this alternate approach. 

Out of this empirical study, both the optimal approach and the 

additional approach significant outperform the alternate 

approach in terms of coverage, however, the latter 

significantly outperforms the former two approaches in terms 

of fault detection.  

Hettiarachchi et al. [8] has described the use of system 

requirements and their risks that enables software testers to 

identify more important test cases that can reveal the faults 

associated with system components. Therefore, by using a 

fuzzy expert system, they aim to make the requirements risk 

estimation process more systematic and precise by reducing 

subjectivity. Furthermore, they have given empirical results 

that show that their proposed approach could improve the 

effectiveness of test case prioritization. They have used 

requirements complexity, modification status, security, and 

size of the software requirements as risk indicators and used a 

fuzzy expert system to estimate the requirements risks. Then 

they have used a semi-automated process to gather the 

required data for their approach and to make the risk 

estimation process less subjective. The results of their study 

indicated that the prioritized tests based on their new approach 

can detect faults early, and also their approach can be effective 

at finding more faults earlier in the high-risk system 

components compared to the control techniques. 

III. BAYESIAN NETWORK BASED TEST CASE PRIORITIZATION 

Mirarab and Tahvildari [2] in their BN based test case 
prioritization approach proposed to structure the Bayesian 
Network in three levels with three types of different nodes as 
follows: 

 Class nodes (ce): Holds information of changed 
percentage, which has two states, Changed and 
Unchanged. 

 Class fault proneness nodes (fe): Is the child node of 
ce, has a one-to-one relationship. Holds information 
of faultiness related to the changed or unchanged 
information. Has two states, Faulty and Non-Faulty. 

 Test Case Nodes (te): Test case node can have more 
than one parent, due to the fact that a test case can 
address to multiple classes or target multiple faults. 
These nodes have two states, Success and Failure. 
These states values are given by the success of their 
coverage. Test Case Nodes are the indicator nodes for 
prioritizing them by their probability of success. 

 



 

Fig. 1. Bayesian Network Structure [2]. 

To construct and execute the BN, it is important to collect 
the correct and consistent information to achieve viable results 
from the BN. Since there are three types of nodes in the BN, 
there are three types of information to be gathered from the 
software under consideration; change information, coupling 
between objects (CBO) & fan-out information, and test case 
coverage information. 

A. Change Information 

 The change information is collected by change difference 
from the previous version of the project and the current project. 
Difference between these two projects is calculated from 
changed lines. However, the calculation of changed lines is not 
performed over SLOC (Source Lines Of Code) of two project, 
due to the unreliability of this metric can change by the coding 
style of the coder. Therefore, the calculation of changed lines is 
calculated over the changed lines of bytecode. 

The calculation of changed lines of bytecode is given in 
Formula (1) [2]. 

𝐶ℎ𝑎𝑛𝑔𝑒𝑑 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 (𝑐𝑒) =
# 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑙𝑖𝑛𝑒𝑠

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑛𝑒𝑠
  (1) 

 To collect the information of changed percentage, 
Sandmark is utilized in [2] whereas we use an open source tool 
called reJ [9].  

B. Coupling between Objects & Fan-out Information 

The coupling between objects is a metric that is defined by 

Chidamber and Kemerer [10] that count the number of classes 

that are coupled to. This metric is used as the indicator of 

fault-proneness. If a class has too many objects coupled with 

other classes, it is high probable that will be endangered by 

changes of other classes. To calculate the fault proneness 

under changed circumstances Formula (2) [2] has been used. 

Regardless the CBO value, the constant α sets the upper bound 

fault-introduction probability and constant δ1 sets the 

minimum for the fault-introduction probability, when the class 

is changed. 

 

𝑃( 𝑓𝑒𝑖 = 𝐹𝑎𝑢𝑙𝑡𝑦 ∣∣  𝑐𝑒𝑖 = 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 ) =
𝛼𝐶𝐵𝑂(𝑒𝑖)

max(𝐶𝐵𝑂(𝑒𝑥))
+  𝛿1  ,

(𝛼 + 𝛿1  ≤ 1)       (2) 

 

However, if there is no change in the classes, to calculate 

the fault proneness the fan-out metric has been used with the 

given Formula (3) [2]. The probability of fault proneness 

should be less than the fault proneness under changed 

circumstances. Therefore, the probability has been adjusted 

with the change impact factor. Similar to Formula (2) [2], but 

the case that the class has not changed (unchanged), β sets the 

upper bound and δ2 sets the minimum bound of fault 

introduction probability. 

 

𝑃( 𝑓𝑒𝑖 = 𝐹𝑎𝑢𝑙𝑡𝑦 ∣∣  𝑐𝑒𝑖 = 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ) =
𝛽𝑓𝑎𝑛−𝑜𝑢𝑡(𝑒𝑖)

max(𝑓𝑎𝑛−𝑜𝑢𝑡(𝑒𝑥))
+ 𝛿2,

(𝛽 + 𝛿2 ≪  𝛼 + 𝛿1  ≤ 1)                         (3) 

 

For CBO and fan-out calculation, ckjm is utilized in [2] 

whereas we use ckjm [11] and ObjectAid UML [12], 

respectively. 

C. Test Case Coverage Information 

To measure the success of test case and prioritize them, as a 
metric the coverage percentage of test cases has been used. The 
coverage calculations are based on classes instead of methods, 
due to the very small effect of difference they have shown. In 
addition test case coverage based on classes provides a 
reduction of nodes in BN that could affect the complexity and 
size of the node probabilistic tables (NPT).  

A test case can be used in and cover other classes as well. 
Therefore, a test case might have several classes connected to 
itself. This introduces many combinations of classes with a 2

n
 

size of NPT. It might be difficult to calculate and observe every 
case in the NPT. For these kinds of situations each node’s 
(class’s) coverage is observed independently and a noisy-OR is 
applied to calculate the other cases. The probabilistic formula 
for calculating test case success probability is given in Formula 
(4) [2]. 

𝑃( 𝑡𝑖 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ∣∣  𝑓𝑒𝑗 = 𝐹𝑎𝑢𝑙𝑡𝑦 ) = 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑡𝑖, 𝑒𝑗)  (4) 

 

To obtain the test case coverages, Emma is utilized in [2] 

whereas we use an Eclipse plug-in called EclEmma [13] with 

JUnit. 

IV. PROPOSED AUTOMATION ARCHITECTURE 

In Figure 2, the architecture of our implemented 

automation tool for prioritizing test cases using BN is given. 

The architecture shows the process of how the test case 

prioritization tool works and which external support tools are 

used in which process. 

First the user selects the previous and current version of 

projects. Then automatically obtains class CBOs, class 

relationships (fan-out), differences between classes, previous 

test case coverage information.  

To collect the information of changed percentage, we use 

an open source tool called reJ [9]. reJ is a tool that allows 

visibility into Java classes for inspection and manipulation of 

Java class files. It provides the difference between two class 

files by comparing them. reJ tool only shows the difference  



 

Fig. 2. Architecture of Bayesian Network based Test Case Prioritization Preprocessor

between classes, however it does not provide a measurement 

information of change percentage. Therefore, reJ has been 

modified that automatically calculates the change percentages 

between class files. The modification is implemented to assign 

the calculated change information directly to the BN. With our 

modifications reJ has integrated to our automated tool to 

calculate the change percentages that has been made in the 

class files. 

For CBO and fan-out calculation, we use ckjm [11] and 

ObjectAid UML [12], respectively. Both ObjectAid UML and 

ckjm provides a XML output of the analyzed project. 

Therefore, it is easy to parse the output and adaptable for 

integrating into our tool to calculate the given Formulae (2) 

and (3). 

To obtain the test case coverages, we use an Eclipse plug-

in called EclEmma with JUnit. EclEmma provides a report of 

test case coverage result. After the unit testing is executed and 

coverages are calculated the results are reported with and .csv 

format file. The file is parsed with our developed tool and fed 

into the Bayesian Network.  

By using the extracted information, node probabilities are 

calculated. To assign the calculated probabilities, the 

appropriate BN constructed. The BN construction creates the 

necessary nodes and establishes links between them, which 

satisfies the model. After BN structure is created, a BN XML 

file automatically created and written by our tool, which keeps 

the nodes, node relationships and probabilities, thereby the BN 

can be executed and return the results of test case priorities.  

The BN is executed with an Java written open source tool 

called OpenMarkov [14]. After BN is executed with, 

OpenMarkov provides probabilistic results of test case 

selection. The test case that has the highest Selected 

probability, has the highest priority. When the test cases are 

prioritized the sorted test cases are executed by their 

prioritized order. On the new commitment of new version of 

the project, the process is repeated. The only manual part of 

the tool is selecting the current and previous version of the 

project.  

V. CASE STUDY 

In this section, we discuss and investigate the type of 
changes that affects the test case priority results. As our case 
study we work on a small Java project that calculates the 
shipment cost by using a decision table. Information about the 
Java project and contents are given in Table I. The class 
diagram is illustrated in Figure 3. 

TABLE I. Shipment Cost Java Project Information. 

Class Name 
SLOC 

Number of 
Methods 

Number of 
Test Cases 

DecisionTable.java 73 1 12 

Menu.java  64 4 4 

Shipment.java  58 7 11 

DeliveryDay.java 9 0 3 

  

We define five different source code change scenarios for 
Shipment Cost Java Project as given below: 

 



 
Fig. 3. Class Diagram of the Java Project used in Case Study

 

 Scenario #1: No change in any class. 

 Scenario #2: A single class DecisionTable.java 
changed. A new parameter named discount is added 
and control for discount has been added in method. 
(0.69 change calculated) 

 Scenario #3: A single class DecisionTable.java 
changed. A variable named discount is added and 
control for discount has been added in method. The 
discount variable has the same usage in Scenario #2 
and has the same controls as well. (0.16 change 
calculated) 

 Scenario #4: A single class DecisionTable.java 
changed. Only the cost variable's initial value has 
been changed from 0 to 25. (0.07 change calculated) 

 Scenario #5: DecisionTable.java, Shipment.java and 
Menu.java have been changed and adapted to 
discount. (by order above 0.13, 0.30 and 0.22 changes 
calculated) 

 In Table II, for defined α=0.8, β=0.125, δ1=0.1 and δ2=0.1 
values in [2]it has been observed that, there has been a peak in 
class TestDecisionTable priority result in scenario #2 compared 
with other scenarios. Scenario #2 and scenario #3 are actually 
representing code change that results in the same program 
behavior. However, scenario #2 prefers to get the discount 
input as a parameter, while scenario #3 prefers to get the 
discount input as a local variable from the user. By adding a 
new parameter in scenario #2, the method’s actual structure 
and definition has been changed. Adding a new parameter to a 
method carries higher risks of affecting other places where it 
uses the method. It enforces the method’s callers to be 
changed, otherwise by not applying or adapting the changes in 
callers will trigger faults. 

 As shown in Table III, different α parameter values defined 
in Formulae (2) and (3) has been tested in five scenarios, while 
δ1, δ2 and β values are set to fixed values as 0,05. These fixed 
values mean that, when there is no change in the class, the 
minimum and upper bound of fault-introduction probabilities  

 

are set to 0,05. On the other hand, when a class has been 
changed, we set the minimum bound of fault-introduction 
probability to 0,05 and let α, the upper bound of fault-
introduction probability to be changed. 

TABLE II. Calculated Test Case Prioritization Results. 

Test 
Classes 

Scenario 
#1 

Scenario 
#2 

Scenario 
#3 

Scenario 
#4 

Scenario 
#5 

TestDeci-

sionTable 
0,333 0,6774 0,4153 0,369 0,4193 

TestMenu 0,1943 0,1943 0,1943 0,1943 0,2547 

TestShip-

ment 
0,209 0,209 0,209 0,209 0,3008 

TestDeli-

veryDay 
0,065 0,065 0,065 0,065 0,065 

 

 For each given α value in scenario #1, without any changes 
performed on the source code, no change in test case priority 
results has been observerved. Mirarab et al. [2] set the 
parameters values in Forumulae (2) and (3) as α=0.8, δ1=0.1, 
δ2=0.1 and β=0.125. The difference between (α + δ1) and (β 
+δ2) is calculated 0.625, while our differences are calculated 
by its order in Table III are; 0.85, 0.65, 0.45, 0.25 and 0.05. We 
see that where α=0.7, the difference between (α + δ1) and (β 
+δ2) is calculated as 0.65, which is close to Mirarab’s [2] 
difference result. Comparing with Mirarab’s [2] results in 
scenario #1 (Table II.) with α=0.7 (Table III.), the maximum 
fluctuation is observed in TestDecisionTable with 0.16, while 
the minumum fluctuation is observed is in TestDeliveryDay 
with 0.03. As a result we finalized that for α=0.7 among all test 
case priority results, there is a fluctuation between ±0.03-0.16 
in test case priorities, compared with Mirarab’s [2] α, β, δ1 and 
δ2. Therefore, satisfying the difference is not sufficient between 
(α + δ1) and (β +δ2) is not sufficient to obtain similar and close 
results. If β value was incremented, the affect on test case 
priorities for scenario #1, would increase the test case 
probabilities (Table III.). We conclude that defining the 
minimum bound of fault-introduction probability also has an 
impact on test case priority results, especially when there are 
minimal amount of change is made in the source code. 



TABLE III. α Change Effect on Test Case Priorities 

  Test Classes α = 0,9 α = 0,7 α = 0,5 α = 0,3 α = 0,1 

S
c
e
n

a
r
io

 #
1
 

Test 

DecisionTable 
0,1704 0,1704 0,1704 0,1704 0,1704 

Test Menu 0,0925 0,0925 0,0925 0,0925 0,0925 

Test Shipment 0,099 0,099 0,099 0,099 0,099 

Test 

DeliveryDay 
0,0325 0,0325 0,0325 0,0325 0,0325 

S
c
e
n

a
r
io

 #
2
 

Test 

DecisionTable 
0,6885 0,5666 0,4447 0,3228 0,2009 

Test Menu 0,0925 0,0925 0,0925 0,0925 0,0925 

Test Shipment 0,099 0,099 0,099 0,099 0,099 

Test 

DeliveryDay 
0,0325 0,0325 0,0325 0,0325 0,0325 

S
c
e
n

a
r
io

 #
3
 

Test 

DecisionTable 
0,2905 0,2623 0,234 0,2057 0,1774 

Test Menu 0,0925 0,0925 0,0925 0,0925 0,0925 

Test Shipment 0,099 0,099 0,099 0,099 0,099 

Test 

DeliveryDay 
0,0325 0,0325 0,0325 0,0325 0,0325 

S
c
e
n

a
r
io

 #
4
 

Test 

DecisionTable 
0,2229 0,2106 0,1982 0,1858 0,1735 

Test Menu 0,0925 0,0925 0,0925 0,0925 0,0925 

Test Shipment 0,099 0,099 0,099 0,099 0,099 

Test 

DeliveryDay 
0,0325 0,0325 0,0325 0,0325 0,0325 

S
c
e
n

a
r
io

 #
5
 

Test 

DecisionTable 
0,3489 0,2789 0,2473 0,2143 0,1799 

Test Menu 0,2526 0,1546 0,1358 0,1169 0,0981 

Test Shipment 0,3412 0,1931 0,1646 0,136 0,1076 

Test 

DeliveryDay 
0,0325 0,0325 0,0325 0,0325 0,0325 

VI. CONCLUSION 

Contributions made to the approach presented in [2] are 

given in Table I. Excluding ckjm, different supporting tools 

has been used in our architecture and platform. 

We haven’t evaluated the prioritization results by using 

APFD metric and the compared with other prioritization 

techniques since it has already been evaluated and compared 

in [2]. For both an framework has been implemented, 

however, the in our work an automated tool has been 

implemented to ease the usability and collection of project 

data. 

Bayesian Networks has shown promising results, 

compared with other prioritization techniques. Therefore, we 

put under scope Mirarab et al. [2]’s work. In this work, an 

automation platform has been implemented that uses a test 

case prioritization approach [2] that automatically obtains data 

from projects, create the BN and calculates test case priority 

probability results.  

 It has been observed that source code changes affect test 

case prioritization results. It is seen that changes perfomed 

over method’s definition has a high impact on test case 

priority results, no matter if the content of the method is same 

with the previous method. 

It has been observed that in Formula (2) and (3) the 

minimum and upper bounds of fault-introduction probabilities 

α, β, and δ values have an effect on test case prioritization 

results. While, β and δ values are kept same, α has been 

changed and new test case priority results are obtained. It has 

been investigated that satisfying the similar differences of 

minimum and upper bounds of fault introduction probability 

does not provide the same test case priority results. Therefore, 

regardless the difference between minimum and upper bound 

fault introduction probability values, the fault introduction 

probabilities by their own has a direct influence on test case 

priority results in BN. 
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