
Automation Architecture for Bayesian Network

Based Test Case Prioritization and Execution

Ekincan UFUKTEPE

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkey

ekincanufuktepe@iyte.edu.tr

Tugkan TUGLULAR

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkey

tugkantuglular@iyte.edu.tr

Abstract—An automation architecture for Bayesian Network

based test case prioritization is designed for software written in

Java programming language following the approach proposed by

Mirarab and Tahvildari [2]. The architecture is implemented as

an integration of a series of tools and called Bayesian Network

based test case prioritization and execution platform. The

platform is triggered by a change in the source code, then it

collects necessary information to be supplied to Bayesian

Network and uses Bayesian Network evaluation results to run

high priority unit tests.

Keywords—testing; test prioritization; Bayesian Networks; Unit

Testing

I. INTRODUCTION

 Ouriques stated that testing approximately consumes 50%
of the total projects budget [1]. Therefore, while performing
tests, it is critical to decide which test cases should be
performed in which order to maximize effectiveness of test
process. State of the art in software development expects, with
each commit request, unit tests should be performed
automatically and if any fault is found, the developer should fix
it before committing. While fixing the source code,
modifications made may have some affect on other parts of the
code. Intuitively, we can say that if modified part of the code
has successfully passed from the unit tests then next concern
will be to re-run the unit tests of the possibly affected part of
the code. If an automated solution tells the tester in which order
the unit tests should be re-run, this will save time and effort.

In this work, a Bayesian Network (BN) based test case
prioritization approach proposed by Mirarab and Tahvildari [2]
has been automated for Java programs and their unit tests.
Additionally, effects of parameter selection (i.e. α, 𝛽, and δ) on
test case prioritization has been observed and reported on a
small case study with 4 classes and 204 lines of code. Table I
shows our contributions to the proposed method in [2] in
addition to making it fully automated including re-runing unit
tests above the selected threshold.

The paper is organized as follows. Section II gives related
work. BN based test case prioritization approach proposed by
Mirarab and Tahvildari [2] is explained in Section III while
comparing their tool usage with ours. Section IV presents our
proposed automation architecture for BN based test case
prioritization. Section V describes the case study and reports

our observations on the effects of parameter selection. Section
VI concludes the paper with future work.

TABLE I. Contributions

Proposed work
[2]

Our Investigations
and Contributions

U
se

d
 T

o
o

ls

Collecting Software Metrics
(CBO, Fan-Out)

ckjm
ckjm, ObjectAid

UML

Change Information Sandmark reJ

Coverage Information Emma EclEmma

Constructing Bayesian Network Smile Library OpenMarkov

Unit Testing - (none) Junit

M
et

h
o
d

o
lo

g
y

Framework Implemented Yes[2][3] Yes

Automatized Tool Implemented No Yes

Observing Types of Source

Code Changes Effect on BN
Test Case Priority Results

No Yes

Observing the effectness of α, β

and δ values on Test Case

Priority Results

No Yes

End-to-end automation No Yes

II. RELATED WORK

Mirarab et al. [2] proposed an approach to prioritize test

cases in aspect of regression testing to enhance the rate of fault

detection. They have proposed a unified model based on

probability that uses Bayesian Networks (BN). Their proposed

model utilizes data of source code changes, software fault

proneness and test coverage. The approach has been compared

with nine different prioritization approaches by using APFD

(Average Percentage Faults Detected) their metric results.

Observations have shown that, BN has performed better

results, when the software system contains more faults.

Wang et al. [4] claims that BN based Test Case

Prioritization technique have focused on assessing the fault

detection capability of each test case can utilize source code

change information, software quality metrics and test coverage

data. However, they claim that these techniques still has an

absence that overlooks the similarities between test cases. To

mitigate this problem, they proposed a hybrid regression test

case prioritization technique to achieve better prioritization by

incorporating code coverage based clustering approach with

BN test case prioritization to reduce the similar test cases

having common code coverage. To find the similar test cases

that have the common code coverages, code coverage based

clustering approach has been used.

Xing et al. [5] have revealed a problem that most of

current regression test case prioritization researches neglect to

use internal structure information of software, although it is a

significant factor influencing the prioritization of test cases.

They have proposed an alternate regression test prioritization

approach by considering the internal structure information and

fault propagation behavior of modifications with respect to the

modified versions of service-oriented workflow applications.

Their approach schedules test cases based on dependency

analysis of internal activities in service- oriented workflow

applications.

Konsaard and Ramingwong [6] have used Genetic

Algorithms (GA) to select and order test cases to provide a

total coverage based on regression testing. Coverage is

measured through the path that a test case passes and to obtain

path information, a graph structure is needed. Therefore,

Konsaard and Ramingwong [6] has used static analysis to get

a CFG (Control Flow Graph) of the code. From the CFG a

decision-to-decision graph created, thereby a test case’s all

possible paths could be easily generated. After a huge amount

of test cases and paths are received, by using GA they

optimize their test cases to create a total coverage. They have

used and APCC (Average Percentage Code Coverage) metric

to compare 5 other prioritization approaches. While the other

5 prioritization approaches APCC value change between

94.50% - 99.83% with 0.020 - 0.050 seconds of execution

time, their approach has shown 100% APCC and 0.011

seconds of execution time.

Hao et al. [7] proposed an additional coverage-based

technique, that uses a greedy strategy. They have investigated

how much difference there are between the order produced by

the additional technique and the optimal order in terms of

coverage, they performed a their study on various empirical

properties of optimal coverage-based test-case prioritization.

To achieve the optimal order in acceptable time for their

experimented programs, they formulated an optimal coverage-

based test-case prioritization with integer linear programming

(ILP) problem. Then they performed an empirical study

comparing the optimal approach with the simple additional

coverage-based approach. From this empirical study, they

have observed that the optimal approach can only relatively

outperform the additional coverage-based approach with no

statistically significant difference in terms of coverage, and the

latter significantly outperforms the former in terms of either

fault detection or execution time. As the optimal approach

schedules the execution order of test cases based on their

structural coverage rather than detected faults, in addition they

implemented the ideal optimal test-case prioritization

approach, which schedules the execution order of test cases

based on their detected faults. They took this ideal approach as

the upper bound of test-case prioritization and conducted with

another empirical study comparing the optimal approach and

the simple additional approach with this alternate approach.

Out of this empirical study, both the optimal approach and the

additional approach significant outperform the alternate

approach in terms of coverage, however, the latter

significantly outperforms the former two approaches in terms

of fault detection.

Hettiarachchi et al. [8] has described the use of system

requirements and their risks that enables software testers to

identify more important test cases that can reveal the faults

associated with system components. Therefore, by using a

fuzzy expert system, they aim to make the requirements risk

estimation process more systematic and precise by reducing

subjectivity. Furthermore, they have given empirical results

that show that their proposed approach could improve the

effectiveness of test case prioritization. They have used

requirements complexity, modification status, security, and

size of the software requirements as risk indicators and used a

fuzzy expert system to estimate the requirements risks. Then

they have used a semi-automated process to gather the

required data for their approach and to make the risk

estimation process less subjective. The results of their study

indicated that the prioritized tests based on their new approach

can detect faults early, and also their approach can be effective

at finding more faults earlier in the high-risk system

components compared to the control techniques.

III. BAYESIAN NETWORK BASED TEST CASE PRIORITIZATION

Mirarab and Tahvildari [2] in their BN based test case
prioritization approach proposed to structure the Bayesian
Network in three levels with three types of different nodes as
follows:

 Class nodes (ce): Holds information of changed
percentage, which has two states, Changed and
Unchanged.

 Class fault proneness nodes (fe): Is the child node of
ce, has a one-to-one relationship. Holds information
of faultiness related to the changed or unchanged
information. Has two states, Faulty and Non-Faulty.

 Test Case Nodes (te): Test case node can have more
than one parent, due to the fact that a test case can
address to multiple classes or target multiple faults.
These nodes have two states, Success and Failure.
These states values are given by the success of their
coverage. Test Case Nodes are the indicator nodes for
prioritizing them by their probability of success.

Fig. 1. Bayesian Network Structure [2].

To construct and execute the BN, it is important to collect
the correct and consistent information to achieve viable results
from the BN. Since there are three types of nodes in the BN,
there are three types of information to be gathered from the
software under consideration; change information, coupling
between objects (CBO) & fan-out information, and test case
coverage information.

A. Change Information

 The change information is collected by change difference
from the previous version of the project and the current project.
Difference between these two projects is calculated from
changed lines. However, the calculation of changed lines is not
performed over SLOC (Source Lines Of Code) of two project,
due to the unreliability of this metric can change by the coding
style of the coder. Therefore, the calculation of changed lines is
calculated over the changed lines of bytecode.

The calculation of changed lines of bytecode is given in
Formula (1) [2].

𝐶ℎ𝑎𝑛𝑔𝑒𝑑 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 (𝑐𝑒) =
𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑙𝑖𝑛𝑒𝑠

𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑛𝑒𝑠
 (1)

 To collect the information of changed percentage,
Sandmark is utilized in [2] whereas we use an open source tool
called reJ [9].

B. Coupling between Objects & Fan-out Information

The coupling between objects is a metric that is defined by

Chidamber and Kemerer [10] that count the number of classes

that are coupled to. This metric is used as the indicator of

fault-proneness. If a class has too many objects coupled with

other classes, it is high probable that will be endangered by

changes of other classes. To calculate the fault proneness

under changed circumstances Formula (2) [2] has been used.

Regardless the CBO value, the constant α sets the upper bound

fault-introduction probability and constant δ1 sets the

minimum for the fault-introduction probability, when the class

is changed.

𝑃(𝑓𝑒𝑖 = 𝐹𝑎𝑢𝑙𝑡𝑦 ∣∣ 𝑐𝑒𝑖 = 𝐶ℎ𝑎𝑛𝑔𝑒𝑑) =
𝛼𝐶𝐵𝑂(𝑒𝑖)

max(𝐶𝐵𝑂(𝑒𝑥))
+ 𝛿1 ,

(𝛼 + 𝛿1 ≤ 1) (2)

However, if there is no change in the classes, to calculate

the fault proneness the fan-out metric has been used with the

given Formula (3) [2]. The probability of fault proneness

should be less than the fault proneness under changed

circumstances. Therefore, the probability has been adjusted

with the change impact factor. Similar to Formula (2) [2], but

the case that the class has not changed (unchanged), β sets the

upper bound and δ2 sets the minimum bound of fault

introduction probability.

𝑃(𝑓𝑒𝑖 = 𝐹𝑎𝑢𝑙𝑡𝑦 ∣∣ 𝑐𝑒𝑖 = 𝑈𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑) =
𝛽𝑓𝑎𝑛−𝑜𝑢𝑡(𝑒𝑖)

max(𝑓𝑎𝑛−𝑜𝑢𝑡(𝑒𝑥))
+ 𝛿2,

(𝛽 + 𝛿2 ≪ 𝛼 + 𝛿1 ≤ 1) (3)

For CBO and fan-out calculation, ckjm is utilized in [2]

whereas we use ckjm [11] and ObjectAid UML [12],

respectively.

C. Test Case Coverage Information

To measure the success of test case and prioritize them, as a
metric the coverage percentage of test cases has been used. The
coverage calculations are based on classes instead of methods,
due to the very small effect of difference they have shown. In
addition test case coverage based on classes provides a
reduction of nodes in BN that could affect the complexity and
size of the node probabilistic tables (NPT).

A test case can be used in and cover other classes as well.
Therefore, a test case might have several classes connected to
itself. This introduces many combinations of classes with a 2

n

size of NPT. It might be difficult to calculate and observe every
case in the NPT. For these kinds of situations each node’s
(class’s) coverage is observed independently and a noisy-OR is
applied to calculate the other cases. The probabilistic formula
for calculating test case success probability is given in Formula
(4) [2].

𝑃(𝑡𝑖 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 ∣∣ 𝑓𝑒𝑗 = 𝐹𝑎𝑢𝑙𝑡𝑦) = 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑡𝑖, 𝑒𝑗) (4)

To obtain the test case coverages, Emma is utilized in [2]

whereas we use an Eclipse plug-in called EclEmma [13] with

JUnit.

IV. PROPOSED AUTOMATION ARCHITECTURE

In Figure 2, the architecture of our implemented

automation tool for prioritizing test cases using BN is given.

The architecture shows the process of how the test case

prioritization tool works and which external support tools are

used in which process.

First the user selects the previous and current version of

projects. Then automatically obtains class CBOs, class

relationships (fan-out), differences between classes, previous

test case coverage information.

To collect the information of changed percentage, we use

an open source tool called reJ [9]. reJ is a tool that allows

visibility into Java classes for inspection and manipulation of

Java class files. It provides the difference between two class

files by comparing them. reJ tool only shows the difference

Fig. 2. Architecture of Bayesian Network based Test Case Prioritization Preprocessor

between classes, however it does not provide a measurement

information of change percentage. Therefore, reJ has been

modified that automatically calculates the change percentages

between class files. The modification is implemented to assign

the calculated change information directly to the BN. With our

modifications reJ has integrated to our automated tool to

calculate the change percentages that has been made in the

class files.

For CBO and fan-out calculation, we use ckjm [11] and

ObjectAid UML [12], respectively. Both ObjectAid UML and

ckjm provides a XML output of the analyzed project.

Therefore, it is easy to parse the output and adaptable for

integrating into our tool to calculate the given Formulae (2)

and (3).

To obtain the test case coverages, we use an Eclipse plug-

in called EclEmma with JUnit. EclEmma provides a report of

test case coverage result. After the unit testing is executed and

coverages are calculated the results are reported with and .csv

format file. The file is parsed with our developed tool and fed

into the Bayesian Network.

By using the extracted information, node probabilities are

calculated. To assign the calculated probabilities, the

appropriate BN constructed. The BN construction creates the

necessary nodes and establishes links between them, which

satisfies the model. After BN structure is created, a BN XML

file automatically created and written by our tool, which keeps

the nodes, node relationships and probabilities, thereby the BN

can be executed and return the results of test case priorities.

The BN is executed with an Java written open source tool

called OpenMarkov [14]. After BN is executed with,

OpenMarkov provides probabilistic results of test case

selection. The test case that has the highest Selected

probability, has the highest priority. When the test cases are

prioritized the sorted test cases are executed by their

prioritized order. On the new commitment of new version of

the project, the process is repeated. The only manual part of

the tool is selecting the current and previous version of the

project.

V. CASE STUDY

In this section, we discuss and investigate the type of
changes that affects the test case priority results. As our case
study we work on a small Java project that calculates the
shipment cost by using a decision table. Information about the
Java project and contents are given in Table I. The class
diagram is illustrated in Figure 3.

TABLE I. Shipment Cost Java Project Information.

Class Name
SLOC

Number of
Methods

Number of
Test Cases

DecisionTable.java 73 1 12

Menu.java 64 4 4

Shipment.java 58 7 11

DeliveryDay.java 9 0 3

We define five different source code change scenarios for
Shipment Cost Java Project as given below:

Fig. 3. Class Diagram of the Java Project used in Case Study

 Scenario #1: No change in any class.

 Scenario #2: A single class DecisionTable.java
changed. A new parameter named discount is added
and control for discount has been added in method.
(0.69 change calculated)

 Scenario #3: A single class DecisionTable.java
changed. A variable named discount is added and
control for discount has been added in method. The
discount variable has the same usage in Scenario #2
and has the same controls as well. (0.16 change
calculated)

 Scenario #4: A single class DecisionTable.java
changed. Only the cost variable's initial value has
been changed from 0 to 25. (0.07 change calculated)

 Scenario #5: DecisionTable.java, Shipment.java and
Menu.java have been changed and adapted to
discount. (by order above 0.13, 0.30 and 0.22 changes
calculated)

 In Table II, for defined α=0.8, β=0.125, δ1=0.1 and δ2=0.1
values in [2]it has been observed that, there has been a peak in
class TestDecisionTable priority result in scenario #2 compared
with other scenarios. Scenario #2 and scenario #3 are actually
representing code change that results in the same program
behavior. However, scenario #2 prefers to get the discount
input as a parameter, while scenario #3 prefers to get the
discount input as a local variable from the user. By adding a
new parameter in scenario #2, the method’s actual structure
and definition has been changed. Adding a new parameter to a
method carries higher risks of affecting other places where it
uses the method. It enforces the method’s callers to be
changed, otherwise by not applying or adapting the changes in
callers will trigger faults.

 As shown in Table III, different α parameter values defined
in Formulae (2) and (3) has been tested in five scenarios, while
δ1, δ2 and β values are set to fixed values as 0,05. These fixed
values mean that, when there is no change in the class, the
minimum and upper bound of fault-introduction probabilities

are set to 0,05. On the other hand, when a class has been
changed, we set the minimum bound of fault-introduction
probability to 0,05 and let α, the upper bound of fault-
introduction probability to be changed.

TABLE II. Calculated Test Case Prioritization Results.

Test
Classes

Scenario
#1

Scenario
#2

Scenario
#3

Scenario
#4

Scenario
#5

TestDeci-

sionTable
0,333 0,6774 0,4153 0,369 0,4193

TestMenu 0,1943 0,1943 0,1943 0,1943 0,2547

TestShip-

ment
0,209 0,209 0,209 0,209 0,3008

TestDeli-

veryDay
0,065 0,065 0,065 0,065 0,065

 For each given α value in scenario #1, without any changes
performed on the source code, no change in test case priority
results has been observerved. Mirarab et al. [2] set the
parameters values in Forumulae (2) and (3) as α=0.8, δ1=0.1,
δ2=0.1 and β=0.125. The difference between (α + δ1) and (β
+δ2) is calculated 0.625, while our differences are calculated
by its order in Table III are; 0.85, 0.65, 0.45, 0.25 and 0.05. We
see that where α=0.7, the difference between (α + δ1) and (β
+δ2) is calculated as 0.65, which is close to Mirarab’s [2]
difference result. Comparing with Mirarab’s [2] results in
scenario #1 (Table II.) with α=0.7 (Table III.), the maximum
fluctuation is observed in TestDecisionTable with 0.16, while
the minumum fluctuation is observed is in TestDeliveryDay
with 0.03. As a result we finalized that for α=0.7 among all test
case priority results, there is a fluctuation between ±0.03-0.16
in test case priorities, compared with Mirarab’s [2] α, β, δ1 and
δ2. Therefore, satisfying the difference is not sufficient between
(α + δ1) and (β +δ2) is not sufficient to obtain similar and close
results. If β value was incremented, the affect on test case
priorities for scenario #1, would increase the test case
probabilities (Table III.). We conclude that defining the
minimum bound of fault-introduction probability also has an
impact on test case priority results, especially when there are
minimal amount of change is made in the source code.

TABLE III. α Change Effect on Test Case Priorities

 Test Classes α = 0,9 α = 0,7 α = 0,5 α = 0,3 α = 0,1

S
c
e
n

a
r
io

 #
1

Test

DecisionTable
0,1704 0,1704 0,1704 0,1704 0,1704

Test Menu 0,0925 0,0925 0,0925 0,0925 0,0925

Test Shipment 0,099 0,099 0,099 0,099 0,099

Test

DeliveryDay
0,0325 0,0325 0,0325 0,0325 0,0325

S
c
e
n

a
r
io

 #
2

Test

DecisionTable
0,6885 0,5666 0,4447 0,3228 0,2009

Test Menu 0,0925 0,0925 0,0925 0,0925 0,0925

Test Shipment 0,099 0,099 0,099 0,099 0,099

Test

DeliveryDay
0,0325 0,0325 0,0325 0,0325 0,0325

S
c
e
n

a
r
io

 #
3

Test

DecisionTable
0,2905 0,2623 0,234 0,2057 0,1774

Test Menu 0,0925 0,0925 0,0925 0,0925 0,0925

Test Shipment 0,099 0,099 0,099 0,099 0,099

Test

DeliveryDay
0,0325 0,0325 0,0325 0,0325 0,0325

S
c
e
n

a
r
io

 #
4

Test

DecisionTable
0,2229 0,2106 0,1982 0,1858 0,1735

Test Menu 0,0925 0,0925 0,0925 0,0925 0,0925

Test Shipment 0,099 0,099 0,099 0,099 0,099

Test

DeliveryDay
0,0325 0,0325 0,0325 0,0325 0,0325

S
c
e
n

a
r
io

 #
5

Test

DecisionTable
0,3489 0,2789 0,2473 0,2143 0,1799

Test Menu 0,2526 0,1546 0,1358 0,1169 0,0981

Test Shipment 0,3412 0,1931 0,1646 0,136 0,1076

Test

DeliveryDay
0,0325 0,0325 0,0325 0,0325 0,0325

VI. CONCLUSION

Contributions made to the approach presented in [2] are

given in Table I. Excluding ckjm, different supporting tools

has been used in our architecture and platform.

We haven’t evaluated the prioritization results by using

APFD metric and the compared with other prioritization

techniques since it has already been evaluated and compared

in [2]. For both an framework has been implemented,

however, the in our work an automated tool has been

implemented to ease the usability and collection of project

data.

Bayesian Networks has shown promising results,

compared with other prioritization techniques. Therefore, we

put under scope Mirarab et al. [2]’s work. In this work, an

automation platform has been implemented that uses a test

case prioritization approach [2] that automatically obtains data

from projects, create the BN and calculates test case priority

probability results.

 It has been observed that source code changes affect test

case prioritization results. It is seen that changes perfomed

over method’s definition has a high impact on test case

priority results, no matter if the content of the method is same

with the previous method.

It has been observed that in Formula (2) and (3) the

minimum and upper bounds of fault-introduction probabilities

α, β, and δ values have an effect on test case prioritization

results. While, β and δ values are kept same, α has been

changed and new test case priority results are obtained. It has

been investigated that satisfying the similar differences of

minimum and upper bounds of fault introduction probability

does not provide the same test case priority results. Therefore,

regardless the difference between minimum and upper bound

fault introduction probability values, the fault introduction

probabilities by their own has a direct influence on test case

priority results in BN.

REFERENCES

 [1] J. F. S. Ouriques, “Strategies for Prioritizing Test Cases Generated
Through Model-Based Testing Approaches,” in Proceedings -
International Conference on Software Engineering, 2015, vol. 2, pp.
879–882.

[2] S. Mirarab and L. Tahvildari, “A Prioritization Approach for Software
Test Cases Based on Bayesian Networks,” Fundam. Approaches to
Softw. Eng. Springer Berlin Heidelb., vol. 4422, pp. 276–290, 2007.

[3] S. Mirarab, “A Bayesian Framework for Software Regression Testing,”
2008.(MSc. Thesis)

[4] X. Zhao, Z. Wang, X. Fan, and Z. Wang, “A Clustering – Bayesian
Network Based Approach for Test Case Prioritization,” Comput. Softw.
Appl. Conf. (COMPSAC), IEEE 39th Annu., vol. 3, pp. 542–547, 2015.

[5] H. Wang, J. Xing, Q. Yang, D. Han, and X. Zhang, “Modification
Impact Analysis Based Test Case Prioritization for Regression Testing
of Service-Oriented Workflow Applications,” in 2015 IEEE 39th Annual
Computer Software and Applications Conference, 2015, pp. 288–297.

[6] P. Konsaard and L. Ramingwong, “Total Coverage Based Regression
Test Case Prioritization using Genetic Algorithm,” in 12th International
Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI-CON), 2015,
pp. 1–6.

[7] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie, “To Be
Optimal Or Not in Test-Case Prioritization,” IEEE Trans. Softw. Eng.,
vol. 6, no. 1, pp. 1–20, 2015.

[8] C. Hettiarachchi, H. Do, and B. Choi, “Risk-based test case
prioritization using a fuzzy expert system,” Inf. Softw. Technol., vol. 69,
pp. 1–15, 2016.

[9] “reJ”: http://rejava.sourceforge.net/.

[10] S. R. Chidamber and C. F. Kemerer, “Towards a metric suite for object
oriented design,” in Proceedings of the Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and
Applications (OOPSLA), 1991, vol. 26, no. 11, pp. 197–211.

[11] D. Spinellis, “Tool writing: A forgotten art?,” IEEE Softw., vol. 22, no.
4, pp. 9–11, 2005.

[12] “ObjectAid UML” : http://www.objectaid.com.

[13] “EclEmma” : http://eclemma.org/.

[14] M. Arias, F. J. Diez, M. A. Palacios-Alonso, M. Yebra, and J.
Fernández, “POMDPs in OpenMarkov and ProbModelXML,” Seventh
Annu. Work. Multiagent Seq. Decis. Under Uncertain., no. June, pp. 1–
8, 2012.

